208
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Mitigation effects of Rhizophagus intraradices and Micrococcus yunnanensis on boron toxicity in maize (Zea may L.) plant

, ORCID Icon &
Pages 3312-3324 | Received 05 Mar 2021, Accepted 07 Mar 2023, Published online: 14 Apr 2023

References

  • A. Khan., X. Q. Zhao, M. T. Javed, K. S. Khan, A. Bano, R. F. Shen, S., and Masood, Sirajuddin. 2016. Bacillus pumilus enhances tolerance in rice (Oryza sativa L.) to combined stresses of NaCl and high B due to limited uptake of Na+. Environmental and Experimental Botany 124:120–9. doi: 10.1016/j.envexpbot.2015.12.011.
  • Aquea, F., F. Federici, C. Moscoso, A. Vega, P. Jullian, J. I. M. Haseloff, and P. Arce‐Johnson. 2012. A molecular framework for the inhibition of Arabidopsis root growth in response to boron toxicity. Plant, Cell & Environment 35 (4):719–34. doi: 10.1111/j.1365-3040.2011.02446.x.
  • Aref, F. 2012. Manganese, iron and copper contents in leaves of maize plants (Zea mays L.) grown with different boron and zinc micronutrients. African Journal of Biotechnology 11 (4):896–903.
  • Bañuelos, G. S., D. LeDuc, and J. Johnson. 2010. Evaluating the tolerance of young hybrid poplar trees to recycled waters high in salinity and boron. International Journal of Phytoremediation 12 (5):419–39. doi: 10.1080/15226510903213910.
  • Berger, K. C., and E. Truog. 1939. B determination in soils and plants. Industrial & Engineering Chemistry Analytical Edition 11 (10):540–5. doi: 10.1021/ac50138a007.
  • Borzoo, S., S. Mohsenzadeh, A. Moradshahi, D. Kahrizi, H. Zamani, and M. Zarei. 2021. Characterization of physiological responses and fatty acid compositions of Camelina sativa genotypes under water deficit stress and symbiosis with Micrococcus yunnanensis. Symbiosis 83 (1):79–90. doi: 10.1007/s13199-020-00733-5.
  • Bouyoucos, G. J. 1951. A recalibration of the hydrometer method for making mechanical analysis of soils 1. Agronomy Journal 43 (9):434–8. doi: 10.2134/agronj1951.00021962004300090005x.
  • Brdar-Jokanović, M. 2020. Boron toxicity and deficiency in agricultural plants. International Journal of Molecular Sciences 21 (4):1424. doi: 10.3390/ijms21041424.
  • Bremner, J. M. 1965. Nitrogen-total. Methods of Soil Analysis: part 2 chemical and microbiological properties 9:1149–1178. doi: 10.2134/agronmonogr9.2.c32
  • Çelik, H., M. A. Turan, B. B. Aşık, S. Öztüfekçi, and A. V. Katkat. 2019. Effects of soil-applied materials on the dry weight and boron uptake of maize shoots (Zea mays L.) under high boron conditions. Communications in Soil Science and Plant Analysis 50 (7):811–26. doi: 10.1080/00103624.2019.1589477.
  • Chandrasekaran, M., S. Boughattas, S. Hu, S. H. Oh, and T. Sa. 2014. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 24 (8):611–25. doi: 10.1007/s00572-014-0582-7.
  • Chapman, H. D., and P. F. Pratt. 1961. Methods of Analysis for Soils, Plants and Waters, vols. 60–61, 150–79. Los Angeles: University of California, .
  • Cottenie, A. 1980. Soil and Plant Testing as a Basis of Fertilizer Recommendations (38/2).
  • Eraslan, F., A. Inal, O. Savasturk, and A. Gunes. 2007. Changes in antioxidative system and membrane damage of lettuce in response to salinity and boron toxicity. Scientia Horticulturae 114 (1):5–10. doi: 10.1016/j.scienta.2007.05.002.
  • Esim, N., D. Tiryaki, O. Karadagoglu, and O. Atici. 2013. Toxic effects of boron on growth and antioxidant system parameters of maize (Zea mays L.) roots. Toxicology and Industrial Health 29 (9):800–5. doi: 10.1177/0748233712442729.
  • Ghavami, N., H. A. Alikhani, A. A. Pourbabaei, and H. Besharati. 2017. Effects of two new siderophore-producing rhizobacteria on growth and iron content of maize and canola plants. Journal of Plant Nutrition 40 (5):736–46. doi: 10.1080/01904167.2016.1262409.
  • Giovannetti, M., and B. Mosse. 1980. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytologist 84 (3):489–500. doi: 10.1111/j.1469-8137.1980.tb04556.x.
  • Giri, B., R. Kapoor, and K. G. Mukerji. 2007. Improved tolerance of Acacia nilotica to salt stress by arbuscular mycorrhiza, Glomus fasciculatum may be partly related to elevated K/Na ratios in root and shoot tissues. Microbial Ecology 54 (4):753–60. doi: 10.1007/s00248-007-9239-9.
  • Hassan, S. E., M. Hijri, and M. St-Arnaud. 2013. Effect of arbuscular mycorrhizal fungi on trace metal uptake by sunflower plants grown on cadmium contaminated soil. New Biotechnology 30 (6):780–7. doi: 10.1016/j.nbt.2013.07.002.
  • Hosseini, E., M. Zarei, M. Sepehri, and S. Safarzadeh. 2021. Do bagasse biochar and microbial inoculants positively affect barley grain yield and nutrients, and microbial activity? Journal of Plant Nutrition 45 (4):522–39. doi: 10.1080/01904167.2021.1952229.
  • Hu, J., P. T. Chan, F. Wu, S. Wu, J. Zhang, X. Lin, and M. H. Wong. 2013. Arbuscular mycorrhizal fungi induce differential Cd and P acquisition by Alfred stonecrop (Sedum alfredii Hance) and upland kangkong (Ipomoea aquatica Forsk.) in an intercropping system. Applied Soil Ecology 63:29–35. doi: 10.1016/j.apsoil.2012.09.002.
  • Hua, T., R. Zhang, H. Sun, and C. Liu. 2021. Alleviation of boron toxicity in plants: Mechanisms and approaches. Critical Reviews in Environmental Science and Technology 51 (24):2975–3015. doi: 10.1080/10643389.2020.1807451.
  • John, M. K., H. H. Chuah, and J. H. Neufeld. 1975. Application of improved azomethine-H method to the determination of boron in soils and plants. Analytical Letters 8 (8):559–68. doi: 10.1080/00032717508058240.
  • Kayıhan, D. S., C. Kayihan, and Y. Ö. Çiftçi. 2019. Regulation of boron toxicity responses via glutathione-dependent detoxification pathways at biochemical and molecular levels in Arabidopsisthaliana. Turkish Journal of Botany 43 (6):749–57. doi: 10.3906/bot-1905-7.
  • Khan., L. Ali, H. J. Chaudhary, M. F. Hussain Munis, A. Bano, S., and Masood, Sirajuddin. 2016. Bacillus pumilus alleviates boron toxicity in tomato (Lycopersicum esculentum L.) due to enhanced antioxidant enzymatic activity. Scientia Horticulturae 200:178–85. doi: 10.1016/j.scienta.2016.01.024.
  • Knudsen, E. I. 1982. Auditory and visual maps of space in the optic tectum of the owl. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience 2 (9):1177–94. doi: 10.1523/JNEUROSCI.02-09-01177.1982.
  • Kormanik, P. P., and A. C. McGraw. 1982. Quantification of vesicular-arbuscular mycorrhizae in plant roots. In Methods and principles of mycorrhizal research, ed. N.C. Schenck, 37–45. St. Paul, Minn.: American Phytopathological Society.
  • Kumar, S., D. C. Suyal, A. Yadav, Y. Shouche, and R. Goel. 2019. Microbial diversity and soil physiochemical characteristic of higher altitude. PloS One 14 (3):e0213844. doi: 10.1371/journal.pone.0213844.
  • Lambert, D. H., H. Cole, and D. E. Baker. 1980. The role of boron in plant response to mycorrhizal infection. Plant and Soil 57 (2–3):431–8. doi: 10.1007/BF02211700.
  • Landi, M., T. Margaritopoulou, I. E. Papadakis, and F. Araniti. 2019. Boron toxicity in higher plants: An update. Planta 250 (4):1011–32. doi: 10.1007/s00425-019-03220-4.
  • Leifheit, E. F., S. D. Veresoglou, A. Lehmann, E. K. Morris, and M. C. Rillig. 2014. Multiple factors influence the role of arbuscular mycorrhizal fungi in soil aggregation—a meta-analysis. Plant and Soil 374 (1–2):523–37. doi: 10.1007/s11104-013-1899-2.
  • Lima, J. C. P. D. S., C. W. A. D. Nascimento, J. G. D. C. Lima, and M. D. A. Lira Junior. 2007. Níveis críticos e tóxicos de boro em solos de Pernambuco determinados em casa de vegetação. Revista Brasileira de Ciência Do Solo 31 (1):73–9. doi: 10.1590/S0100-06832007000100008.
  • Lindsay, W. L., and W. A. Norvell. 1978. Development of a DTPA soil test for zinc, iron, manganese, and copper 1. Soil Science Society of America Journal 42 (3):421–8. doi: 10.2136/sssaj1978.03615995004200030009x.
  • Liu, C., Z. Dai, M. Cui, W. Lu, and H. Sun. 2018. Arbuscular mycorrhizal fungi alleviate boron toxicity in Puccinellia tenuiflora under the combined stresses of salt and drought. Environmental Pollution (Barking, Essex: 1987) 240:557–65. doi: 10.1016/j.envpol.2018.04.138.
  • Masood, S., M. Iqbal, H. J. Chaudhary, and M. F. H. Munis. 2016. Subcellular compartmentation of sugars in wheat leaves under the influence of salinity and boron toxicity. Journal of Plant Nutrition 39 (14):2100–5. doi: 10.1080/01904167.2016.1193608.
  • Masood, S., X. Q. Zhao, and R. Fang Shen. 2022. The effect of pH on boron toxicity and nutrient uptake by wheat and rapeseed. Journal of Plant Nutrition, 1–15 46 (9):2167–81. doi: 10.1080/01904167.2022.2155536.
  • Masood, S., X. Q. Zhao, and R. F. Shen. 2019. Bacillus pumilus increases boron uptake and inhibits rapeseed growth under boron supply irrespective of phosphorus fertilization. AoB PLANTS 11 (4):36. doi: 10.1093/aobpla/plz036.
  • Matt, J. K., H. H. Chuah, and J. H. Neufeld. 1975. Applications of improved azomethine-H method in the determination of boron in soils and plants. Analytical Letters 8 (8):559–68. doi: 10.1080/00032717508058240.
  • Navarro, J. M., O. Pérez-Tornero, and A. Morte. 2014. Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. Journal of Plant Physiology 171 (1):76–85. doi: 10.1016/j.jplph.2013.06.006.
  • Nawaz, M., S. Ishaq, H. Ishaq, N. Khan, N. Iqbal, S. Ali, M. Rizwan, A. A. Alsahli, and M. N. Alyemeni. 2020. Salicylic acid improves boron toxicity tolerance by modulating the physio-biochemical characteristics of maize (Zea mays L.) at an early growth stage. Agronomy 10 (12):2013. doi: 10.3390/agronomy10122013.
  • Nelson, D. W., L. E. Sommers, D. Sparks, A. Page, P. Helmke, R. Loeppert, and M. Sumner. 1996. Total carbon, organic carbon, and organic matter. Methods of soil analysis. Part 3-chemical and microbiological properties, 961–1010. Madison: Soil Science of America and American Society of Agronomy. doi: 10.2136/sssabookser5.3.c34.
  • Olsen, S. R., and L. E. Sommers. 1982. Phosphorus. P. 403–424. In Methods of soil analysis, Part 2. Soil Science Society of America Journal, ed. A. L. Page. Madison: Soil Science of America and American Society of Agronomy.
  • Page, A. I., R. H. Miller, and D. R. Keeny. 1982. Methods of soil analysis. Part II. Chemical and microbiological methods. Madison: American Society of Agronomy.
  • Pandey, A., M. K. Khan, M. Hamurcu, M. Brestic, A. Topal, and S. Gezgin. 2022. Insight into the root transcriptome of a boron-tolerant Triticum zhukovskyi genotype grown under boron toxicity. Agronomy 12 (10):2421. doi: 10.3390/agronomy12102421.
  • Rhoades, J. 1996. Salinity: Electrical conductivity and total dissolved solids. Methods of soil analysis: Part 3 Chemical methods 5:417–435.
  • Riaz, M., M. Kamran, M. A. El-Esawi, S. Hussain, and X. Wang. 2021. Boron-toxicity induced changes in cell wall components, boron forms, and antioxidant defense system in rice seedlings. Ecotoxicology and Environmental Safety 216:112192. doi: 10.1016/j.ecoenv.2021.112192.
  • Sarafi, E., A. Siomos, P. Tsouvaltzis, I. Therios, and C. Chatzissavvidis. 2018. Boron toxicity effects on the concentration of pigments, carbohydrates and nutrient elements in six non-grafted pepper cultivars (Capsicum annuum L.). Indian Journal of Plant Physiology 23 (3):474–85. doi: 10.1007/s40502-018-0388-2.
  • Simón-Grao, S., M. Nieves, J. J. Martínez-Nicolás, M. Alfosea-Simón, J. M. Cámara-Zapata, J. C. Fernández-Zapata, and F. García-Sánchez. 2019. Arbuscular mycorrhizal symbiosis improves tolerance of Carrizo citrange to excess boron supply by reducing leaf B concentration and toxicity in the leaves and roots. Ecotoxicology and Environmental Safety 173:322–30. doi: 10.1016/j.ecoenv.2019.02.030.
  • Sonmez, O., S. A. L. İ H. Aydemir, and C. E. N. G. İ Z. Kaya. 2009. Mitigation effects of mycorrhiza on boron toxicity in wheat (Triticum durum) plants. New Zealand Journal of Crop and Horticultural Science 37 (2):99–104. doi: 10.1080/01140670909510254.
  • Sukweenadhi, J., Y. J. Kim, E. S. Choi, S. C. Koh, S. W. Lee, Y. J. Kim, and D. C. Yang. 2015. Paenibacillus yonginensis DCY84T induces changes in Arabidopsis thaliana gene expression against aluminum, drought, and salt stress. Microbiological Research 172:7–15. doi: 10.1016/j.micres.2015.01.007.
  • Thomas, G. W. 1996. Soil pH and soil acidity. Methods of Soil Analysis Part 3-Chemical Methods, (methodsofsoilan3) 13:457–90.
  • Turhan, A. 2021. Interactive effects of boron stress and mycorrhizal (AMF) treatments on tomato growth, yield, leaf chlorophyll and boron accumulation, and fruit characteristics. Archives of Agronomy and Soil Science 67 (14):1974–85. doi: 10.1080/03650340.2020.1818724.
  • Wang, G., S. F. DiTusa, D.-H. Oh, A. D. Herrmann, D. G. Mendoza-Cozatl, M. A. O'Neill, A. P. Smith, and M. Dassanayake. 2021. Cross species multi‐omics reveals cell wall sequestration and elevated global transcript abundance as mechanisms of boron tolerance in plants. The New Phytologist 230 (5):1985–2000. doi: 10.1111/nph.17295.
  • Wu, X., X. Lu, M. Riaz, L. Yan, and C. Jiang. 2018. Boron deficiency and toxicity altered the subcellular structure and cell wall composition architecture in two citrus rootstocks. Scientia Horticulturae 238:147–54. doi: 10.1016/j.scienta.2018.04.057.
  • Yermiyahu, U., A. Ben-Gal, R. Keren, and R. J. Reid. 2008. Combined effect of salinity and excess boron on plant growth and yield. Plant and Soil 304 (1–2):73–87. doi: 10.1007/s11104-007-9522-z.
  • Yildirim, E., H. Karlidag, M. Turan, A. Dursun, and F. Goktepe. 2011. Growth, nutrient uptake, and yield promotion of broccoli by plant growth promoting rhizobacteria with manure. HortScience 46 (6):932–6. doi: 10.21273/HORTSCI.46.6.932.
  • Yolci, M. S., R. Tunçtürk, T. Eryiğit, and M. Tunçtürk. 2022. Boron toxicity and PGPR phytoremediation effects on physiological and biochemical parameters of medical sage (Salvia officinalis L.). Journal of Elementology 27 (4):1021–36.
  • Zarei, M., S. König, S. Hempel, M. K. Nekouei, G. Savaghebi, and F. Buscot. 2008. Community structure of arbuscular mycorrhizal fungi associated to Veronica rechingeri at the Anguran zinc and lead mining region. Environmental Pollution (Barking, Essex: 1987) 156 (3):1277–83. doi: 10.1016/j.envpol.2008.03.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.