110
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Conjunctive and concentration dependent effects of nanoscale zinc and boron on the physiological, biochemical, nutrient uptake, and translocation processes in peanut (Arachis hypogaea L.)

, , , &
Pages 4494-4518 | Received 18 Nov 2021, Accepted 28 Jun 2023, Published online: 13 Jul 2023

References

  • Abdel-Aziz, H. M. M., N. A. H. Mohammed, and M. O. Aya. 2018. Effect of foliar application of nano chitosan NPK fertilizer on the chemical composition of wheat grains. Egyptian Journal of Botany 0 (0):0– doi: 10.21608/ejbo.2018.1907.1137.
  • Abdul-Baki, A. A., and J. D. Anderson. 1973. Vigor determination in soybean seed by multiple criteria. Crop Science 13 (6):630–3. doi: 10.2135/cropsci1973.0011183X001300060013x.
  • Aebi, H. 1974. Catalase. In Bergmeyer HU. Methods of enzymatic analysis, 673–84. Weinheim/New York: Verlag Chemie/Academic Press Inc.
  • Alidoust, D., and A. Isoda. 2013. Effect of γfe2o3 nanoparticles on photosynthetic characteristic of soybean (Glycine max (L.) Merr.): Foliar spray versus soil amendment. Acta Physiologiae Plantarum 35 (12):3365–75. doi: 10.1007/s11738-013-1369-8.
  • Angelini, R., F. Manes, and R. Federico. 1990. Spatial and functional correlation between diamine oxidase and peroxidase activities and their dependence upon etiolation and wounding in Chickpea stem. Planta 182 (1):89–96. doi: 10.1007/BF00239989.
  • ANGRAU Groundnut Outlook Report-January to December 2021. https://angrau.ac.in/downloads/AMIC/OutlookReports/2021/6-GROUNDNUT_January%20to%20December%202021.pdf
  • Arnon, D. I. 1949. Copper enzymes in isolated chloroplasts, polyphenoxidase in Beta vulgaris. Plant Physiology 24 (1):1–15. doi: 10.1104/pp.24.1.1.
  • Bandopadhyay, U., D. Das, and R. K. Bannerjee. 1999. Reactive oxygen species: Oxidative damage and pathogenesis. Current Science 77:658–66.
  • Blevins, D. G., and K. M. Lukaszewski. 1998. Boron in plant structure and function. Annual Review of Plant Physiology and Plant Molecular Biology 49:481–500. doi: 10.1146/annurev.arplant.49.1.481.
  • Broadley, M. R., P. J. White, J. P. Hammond, I. Zelko, and A. Lux. 2007. Zinc in plants. The New Phytologist 173 (4):677–702. doi: 10.1111/j.1469-8137.2007.01996.x.
  • Cakmak, I. 2000. Role of zinc in protecting plant cells from reactive oxygen species. The New Phytologist 146 (2):185–205. doi: 10.1046/j.1469-8137.2000.00630.x.
  • Cakmak, I. 2008. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant and Soil 302 (1-2):1–17. doi: 10.1007/s11104-007-9466-3.
  • Chahal, R. S., and S. P. S. Ahluwalia. 1977. Neutroperiodism in different varieties of groundnut with respect Zn and its uptake as affected by phosphorous application. Plant and Soil 47 (3):541–6. doi: 10.1007/BF00011024.
  • Chau, C. F., Wu, S. H., and Yen G. C. 2007. The development of regulations for food nanotechnology. Trends in Food Science & Technology 18 (5):269–80. doi: 10.1016/j.tifs.2007.01.007.
  • Chitdeshwari, T., and S. Poongothai. 2003. Yield of groundnut and its nutrient uptake as influenced by zinc, boron and sulphur. Agricultural Science Digest 23 (4):263–6.
  • Deepa, M., P. Sudhakar, K. V. Nagamadhuri, K. Balakrishna Reddy, T. Giridhara Krishna, and T. N. V. K. V. Prasad. 2015. First evidence on phloem transport of nanoscale calcium oxide in groundnut using solution culture technique. Applied Nanoscience 5 (5):545–51. doi: 10.1007/s13204-014-0348-8.
  • Devlin, R. M., and F. G. Witham. 1983. Plant physiology (4th ed.). New Delhi, India: CBS.
  • Dimkpa, C. O., J. E. McLean, D. W. Britt, and A. J. Anderson. 2015. Nano-CuO and interaction with nano-ZnO or soil bacterium provide evidence for the interference of nanoparticles in metal nutrition of plants. Ecotoxicology (London, England) 24 (1):119–29. doi: 10.1007/s10646-014-1364-x.
  • Eichert, T., and H. E. Goldbach. 2008. Equivalent pore radii of hydrophilic foliar uptake routes in stomatous and astomatous leaf surfaces – Further evidence for a stomatal pathway. Physiologia Plantarum 132 (4):491–502. doi: 10.1111/j.1399-3054.2007.01023.x.
  • Eichert, T., A. Kurtz, U. Steiner, and H. E. Goldbach. 2008. Size exclusion limits and lateral heterogeneity of the stomatal foliar uptake pathway for aqueous solutes and water-suspended nanoparticles. Physiologia Plantarum 134 (1):151–60. doi: 10.1111/j.1399-3054.2008.01135.x.
  • Elayaraja, D., and R. Singaravel. 2014. Evaluation of boron levels and organics on soil nutrients and yield of groundnut in coastal sandy soil. Madras Agricultural Journal 97 (4-6):142–4.
  • El-Metwally, I. M., D. M. R. A. Basha, and M. E. A. El-Aziz. 2018. Response of peanut plants to different foliar applications of nano- iron, manganese and zinc under sandy soil conditions. Middle East Journal of Applied Science 8 (2):474–82.
  • Gao, F., F. Hong, C. Liu, L. Zheng, M. Su, X. Wu, F. Yang, C. Wu, and O. Yang. 2006. Mechanism of Nano-anatase TiO2 on promoting photosynthetic carbon reaction of spinach. Biological Trace Element Research 111 (1-3):239–53. doi: 10.1385/BTER:111:1:239.
  • Gosavi, A. B., K. P. Deolankar, J. S. Chaure, and D. A. Gadekar. 2017. Response of wheat for NPK foliar sprays under water stress condition. International Journal of Chemical Studies 5 (4):766–8.
  • Hanumanthappa, D. C., B. P. Sushmitha, and A. S. Gnanesh. 2019. Standardization of nano boron and nano zinc concentrations for effective cultivation of groundnut (Arachis hypogaeaL.). International Journal of Chemical Studies 7 (3):2720–3.
  • Hiscox, J. D., and J. G. F. Stam. 1979. A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57 (12):1332–4. doi: 10.1139/b79-163.
  • Hong, F., J. Zhou, C. Liu, F. Yang, C. Wu, L. Zheng, and P. Yang. 2005. Effect of nano titanium oxide on phytochemical reaction of chloroplast of spinach. Biological Trace Element Research 105 (1-3):269–79. doi: 10.1385/BTER:105:1-3:269.
  • Hosseini, S. M., M. Maftoun, N. Karimian, A. Ronaghi, and Y. Emam. 2007. Effect of zinc × boron interaction on plant growth and tissue nutrient concentration of corn. Journal of Plant Nutrition 30 (5):773–81. doi: 10.1080/01904160701289974.
  • Hussaini, M. A., V. B. Ogunlele, A. A. Ramalan, and A. M. Falaki. 2008. Mineral composition of dry season maize (Zea mays) in response to varying levels of nitrogen, phosphorus and irrigation at Kadawa. Nigeria. World Journal of Agricultural Sciences 4 (6):775–80.
  • Kavitha, M. G., K. N. Geetha, N. N. Lingaraju, A. G. Shankar, and R. Raddy. 2018. Response of sunflower (Helianthus annuus L.) to nano boron nitride fertilization. International Journal of Chemical Studies 6 (5):2624–30.
  • Kobayashi, Y., and S. Mizutani. 1970. Studies on the wilting treatment of corn plant: The influence of the artificial auxin control in nodes on the behaviour of rooting. Proceedings of the. Japanese Journal of Crop Science 39 (2):213–20. doi: 10.1626/jcs.39.213.
  • Kolenčík, M., D. Ernst, M. Urík, Ľ. Ďurišová, M. Bujdoš, M. Šebesta, E. Dobročka, S. Kšiňan, R. Illa, Y. Qian, et al. 2020. Foliar application of low concentrations of titanium dioxide and zinc oxide nanoparticles to the common sunflower under field conditions. Nanomaterials 10 (8):1619. doi: 10.3390/nano10081619.
  • Kumar, N., and S. R. Salakinkop. 2017. Influence of agronomic biofortification of zinc and iron on their density in maize grain and nutrient uptake. International Journal of Environmental Sciences & Natural Resources 7 (2):48–52. ISSN: 2572-1119. doi: 10.19080/IJESNR.2017.07.555708.
  • Lin, D., and B. Xing. 2007. Phytotoxicity of nanoparticles: Inhibition of seed germination and root growth. Environmental Pollution (Barking, Essex: 1987) 150 (2):243–50. doi: 10.1016/j.envpol.2007.01.016.
  • Liu, X. M., F. D. Zhang, S. Q. Zhang, X. S. He, R. Fang, Z. Feng, and Y. Wang. 2005. Effects of nano-ferric oxide on the growth and nutrients absorption of peanut. Plant Nutrition and Fertilizer Science 11:14–8.
  • Lu, C. M., C. Y. Zhang, J. Q. Wen, G. R. Wu, and M. X. Tao. 2002. Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science 21 (3):168–71.
  • Mandal, C., P. Bondapandhyay, A. Alipatra, and H. Banerjee. 2012. Performance of summer mung bean (Vigna radiata L. Wilczek) under different irrigation regimes and boron levels. Journal of Food Legume 25:37–40.
  • Miliauskienė, J., A. Brazaitytė, R. Sutulienė, M. Urbutis, and S. Tučkutė. 2022. ZnO nanoparticle size-dependent effects on swiss chard growth and nutritional quality. Agriculture 12 (11):1905. doi: 10.3390/agriculture12111905.
  • Munir, T., M. Rizwan, M. Kashif, A. Shahzad, S. Ali, N. Amin, R. Zahid, M. F. E. Alam, and M. Imran. 2018. Effect of zinc oxide nanoparticles on the growth and Zn uptake in wheat (Triticum aestivum L.) by seed priming method. Digest Journal of Nanomaterials and Biostructures 13 (1):315–23.
  • Naseeruddin, R., V. Sumathi, T. Prasad, P. Sudhakar, V. Chandrika, and B. Ravindra Reddy. 2018. Unprecedented synergistic effects of nanoscale nutrients on growth, productivity of sweet sorghum [Sorghum bicolor (L.) Moench], and nutrient biofortification. Journal of Agricultural and Food Chemistry 66 (5):1075–84. doi: 10.1021/acs.jafc.7b04467.
  • Nasef Nadia, M. A, and Badran, M. 2006. Response of peanut to foliar spray with boron and/or Rhizobium inoculation. Journal of Applied Sciences Research 2 (12):1330–7.
  • Nekrasova, G. F., O. S. Ushakova, A. E. Ermakov, M. A. Uimin, and I. V. Byzov. 2011. Effects of copper (II) ions and copper oxide nanoparticles on Elodea densa planch. Russian Journal of Ecology 42 (6):458–63. doi: 10.1134/S1067413611060117.
  • Ozturk, L., M. A. Yazici, C. Yucel, A. Torun, C. Cekic, A. Bagci, H. Ozkan, H. J. Braun, Z. Sayers, and I. Cakmak. 2006. Concentration and localization of zinc during seed development and germination in wheat. Physiologia Plantarum 128 (1):144–52. doi: 10.1111/j.1399-3054.2006.00737.x.
  • Panda, S. K. 2001. Response of green gram seeds under salinity stress. Indian Journal of Plant Physiology 6:438–40.
  • Panhwar, F. 2005. Oilseed crops future in Sindh Pakistan. DigitalvelargGmbh, Germany, 38. 64.
  • Panse, V. G., and P. V. Sukhatme. 1985. Statistical Methods for Agricultural Workers, 4th ed. New Delhi: ICAR, 347.
  • Patel, M. S., and B. A. Golakiya. 1986. Effect of calcium carbonate and boron application on yield and nutrient uptake by groundnut. Journal of Indian Society of Soil Science 34:815–20.
  • Prasad, T., N. V. K. V. Sudhakar, P. Sreenivasulu, Y. Latha, P. Munaswamy, V. Raja Reddy, K. Sreeprasad, T. S. Sajanlal, P. R., and Pradeep, T. 2012. Effect of nanoscale zinc oxide particles on the germination, growth and yield of peanut. Journal of Plant Nutrition 35 (6):905–27. doi: 10.1080/01904167.2012.663443.
  • Qureshi, A., D. K. Singh, and S. Dwivedi. 2018. Nano-fertilizers: A novel way for enhancing nutrient use efficiency and crop productivity. International Journal of Current Microbiology and Applied Sciences 7 (2):3325–35. doi: 10.20546/ijcmas.2018.702.398.
  • Rajeswari, Y., S. Ramasamy, V. Ajayan, A. Katsuhiko, and C. B. Arumugam. 2009. X-ray peak broadening analysis in ZnO nanoparticles. Solid State Communications 149:1919–23.
  • Raliya, R., R. Nair, S. Chavalmane, W. N. Wang, and P. Biswas. 2015. Mechanistic evaluation of translocation and physiological impact of titanium dioxide and zinc oxide nanoparticles on the tomato (Solanum lycopersicum L.) plant. Metallomics: Integrated Biometal Science 7 (12):1584–94. doi: 10.1039/c5mt00168d.
  • Sadasivam, S., and A. Manickam. 2013. Biochemical Methods. 2nd ed. New Delhi: New Age International Limited Publishers.
  • Schwab, F., G. Zhai, M. Kern, A. Turner, J. L. Schnoor, and M. R. Wiesner. 2016. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants - Critical review. Nanotoxicology 10 (3):257–78. doi: 10.3109/17435390.2015.1048326.
  • Shamsuddoha, A. T. M., M. Anisuzzaman, G. N. C. Sutradhar, M. A. Hakim, and M. S. I. Bhuuiyan. 2011. Effect of sulphur and boron on nutrients in mungbean and soil health. Plant Resource Management 2:224–9.
  • Sharma, U., and P. Kumar. 2016. Micronutrient research in India: Extent of deficiency, crop responses and future challenges. International Journal of Advanced Research 4 (4):1402–6. doi: 10.21474/IJAR01/234.
  • Singh, A. L., M. S. Basu, and N. B. Singh. 2004. Mineral Disorders of Groundnut. New Delhi, India: ICAR Publications.
  • Singh, M. D, and Kumar, B. N. A. 2017. Bio efficacy of nano zinc sulphide (ZnS) on growth and yield of sunflower (Helianthus annuus L.) and nutrient status in the soil. International Journal of Agriculture Sciences 9 (6):3795–8.
  • Subbaiah, L. V., T. N. V. K. V. Prasad, T. Giridhara Krishna, P. Sudhakar, B. Ravindra Reddy, and T. Pradeep. 2016. Novel effects of nanoparticulate delivery of zinc growth, productivity and zinc biofortification in maize (Zea mays L). Journal of Agricultural and Food Chemistry 64 (19):3778–88. doi: 10.1021/acs.jafc.6b00838.
  • Sushmitha, B. P., Hanumanthappa, D. C., Mudalagiriyappa, Kalyanamurthy, K. N, and Shree Harshakumar, S. S. 2018. Response of groundnut (Arachis hypogaea L.) to nano boron. Green Farming 9 (5):925–7.
  • Tripathy, S. K., A. K. Patra, and R. C. Samui. 1999. Effect of micronutrients on nodulation, growth, yield and nutrient uptake of summer groundnut (Arachis hypogea). Annals of Agriculture Research 20 (4):439–42.
  • Upadhyaya, H., H. Roy, S. Shome, S. Tewari, and M. K. Bhattacharya. 2017. Physiological impact of zinc nanoparticle on germination of rice (Oryza sativa L) seed. Journal of Plant Science and Phytopathology 1 (2):62–70. doi: 10.29328/journal.jpsp.1001008.
  • Vishwakarma, A. K., K. A. Brajendra, and R. Pathak. 2008. Effect of different sources of boron application on productivity of groundnut in Mizoram. International Journal of Tropical Agricultural 26:157–9.
  • Wang, W. N., J. C. Tarafdar, and P. Biswas. 2013. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. Journal of Nanoparticle Research 15 (1):1417. doi: 10.1007/s11051-013-1417-8.
  • Yang, F., F. S. Hong, W. J. You, C. Liu, F. Q. Gao, C. Wu, and P. Yang. 2006. Influences of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research 110 (2):179–90. doi: 10.1385/bter:110:2:179.
  • Zhang, F., R. Wang, Q. Xiao, Y. Wang, and J. Zhang. 2006. Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on biology. II. Effects of slow/controlled-release fertilizer cemented and coated by nano-materials on plants. Nanoscience 11:18–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.