74
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Can foliar application of zinc increased growth, physiology, and yield in snap beans?

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 4519-4531 | Received 01 Jun 2022, Accepted 28 Jun 2023, Published online: 28 Jul 2023

References

  • Araújo, É. O., and M. A. C. Silva. 2012. Boron and zinc interaction on growth, development and nutrition of cotton plants. Revista Brasileira de Ciências Agrárias - Brazilian Journal of Agricultural Sciences 7 (suppl):720–7. doi:10.5039/agraria.v7isa1848.
  • Bala, R., A. Kalia, and S. S. Dhaliwal. 2019. Evaluation of efficacy of ZnO nanoparticles as remedial zinc nanofertilizer for rice. Journal of Soil Science and Plant Nutrition 19 (2):379–89. doi:10.1007/s42729-019-00040-z.
  • Balashouri, P., and Y. Prameeladevi. 1995. Effect of zinc on germination, growth and pigment content and phytomass of Vigna radiata and Sorghum bicolor. Journal of Ecobiology 7:109–14.
  • Bhatt, R., A. Hossain, and P. Sharma. 2020. Zinc biofortification as an innovative technology to alleviate the zinc deficiency in human health: A review. Open Agriculture 5 (1):176–87. doi:10.1515/opag-2020-0018.
  • Boonchuay, P., I. Cakmak, B. Rerkasem, and C. Prom-U-Thai. 2013. Effect of different foliar zinc application at different growth stages on seed zinc concentration and its impact on seedling vigor in rice. Soil Science and Plant Nutrition 59 (2):180–8. doi:10.1080/00380768.2013.763382.
  • Broadley, M., P. Brown, I. Cakmak, Z. Rengel, and F. Zhao. 2012. Function of nutrients: Micronutrients. In Marschner’s mineral nutrition of higher plants, ed. P. Marschner, 191–248. Amsterdã: Elsevier.
  • Caldelas, C., and D. J. Weiss. 2017. Zinc homeostasis and isotopic fractionation in plants: A review. Plant and Soil 411 (1–2):17–46. doi:10.1007/s11104-016-3146-0.
  • Cambraia, T. L. L., R. L. F. Fontes, L. Vergütz, R. F. Vieira, J. C. L. Neves, P. S. Corrêa Netto, and R. F. N. Dias. 2019. Agronomic biofortification of common bean grain with zinc. Pesquisa Agropecuária Brasileira 54:e01003. doi:10.1590/s1678-3921.pab2019.v54.01003.
  • Core Team, R. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  • Diagboya, P. N., B. I. Olu-Owolabi, and K. O. Adebowale. 2015. Effects of time, soil organic matter, and iron oxides on the relative retention and redistribution of lead, cadmium, and copper on soils. Environmental Science and Pollution Research International 22 (13):10331–9. doi:10.1007/s11356-015-4241-0.
  • Doolette, C. L., T. L. Read, C. Li, K. G. Scheckel, E. Donner, P. M. Kopittke, J. K. Schjoerring, and E. Lombi. 2018. Foliar application of zinc sulphate and zinc EDTA to wheat leaves: Differences in mobility, distribution, and speciation. Journal of Experimental Botany 69 (18):4469–81. doi:10.1093/jxb/ery236.
  • Du, W., J. Yang, Q. Peng, X. Liang, and H. Mao. 2019. Comparison study of zinc nanoparticles and zinc sulphate on wheat growth: From toxicity and zinc biofortification. Chemosphere 227:109–16. doi:10.1016/j.chemosphere.2019.03.168.
  • Fernández, V., and P. H. Brown. 2013. From plant surface to plant metabolism: The uncertain fate of foliar-applied nutrients. Frontiers in Plant Science 4:289– doi:10.3389/fpls.2013.00289.
  • Gupta, T., A. Kim, S. Phadke, S. Biswas, T. Luong, B. J. Hertzberg, M. Chamoun, K. Evans-Lutterodt, and D. A. Steingart. 2016. Improving the cycle life of a high-rate, high-potential aqueous dual-ion battery using hyper-dendritic zinc and copper hexacyanoferrate. Journal of Power Sources 305:22–9. doi:10.1016/j.jpowsour.2015.11.065.
  • Hidoto, L., W. Worku, H. Mohammed, and T. Bunyamin. 2017. Effects of zinc application strategy on zinc content and productivity of chickpea grown under zinc deficient soils. Journal of Soil Science and Plant Nutrition 17 (1):112–26. doi:10.4067/S0718-95162017005000009.
  • Hisamitsu, T., O. Ryuichi, and Y. Hidenobu. 2001. Effect of zinc concentration in the solution culture on the growth and content of chlorophyll, zinc and nitrogen in corn plants (Zea mays L). Journal of Tropical Agriculture 36 (1):58–66.
  • Jha, A. B., K. Ashokkumar, M. Diapari, S. J. Ambrose, H. Zhang, B. Tar’an, K. E. Bett, A. Vandenberg, T. D. Warkentin, and R. W. Purves. 2015. Genetic diversity of folate profiles in seeds of common bean, lentil, chickpea and pea. Journal of Food Composition and Analysis 42:134–40. doi:10.1016/j.jfca.2015.03.006.
  • Kabir, A., A. Swaraz, and J. Stangoulis. 2014. Zinc-deficiency resistance and biofortification in plants. Journal of Plant Nutrition and Soil Science 177 (3):311–9. doi:10.1002/jpln.201300326.
  • Krężel, A., and W. Maret. 2016. The biological inorganic chemistry of zinc ions. Archives of Biochemistry and Biophysics 611:3–19. doi:10.1016/j.abb.2016.04.010.
  • Lunet, N., M. Severo, and H. Barros. 2006. Desvio padrão ou erro padrão. Porto: Universidade do Porto.
  • Mahdieh, M., M. R. Sangi, F. Bamdad, and A. Ghanem. 2018. Effect of seed and foliar application of nano-zinc oxide, zinc chelate, and zinc sulphate rates on yield and growth of pinto bean (Phaseolus vulgaris) cultivars. Journal of Plant Nutrition 41 (18):2401–12. doi:10.1080/01904167.2018.1510517.
  • Manaf, A., M. Raheel, A. Sher, A. Sattar, S. Ul-Allah, A. Qayyum, and Q. Hussain. 2019. Interactive effect of zinc fertilization and cultivar on yield and nutritional attributes of canola (Brassica napus L.). Journal of Soil Science and Plant Nutrition 19 (3):671–7. doi:10.1007/s42729-019-00067-2.
  • Manivasagaperumal, R., P. Vijayarengan, S. Balamurugan, and G. Thiyagarajan. 2011. Effect of copper on growth, dry matter yield and nutrient content of Vigna radiata (L.) Wilczek. Journal of Phytology 3 (3):53–62.
  • Mendoza, R. M., and N. F. Lopes. 2005. Plant physiology: Photosynthesis respiration water relations mineral nutrition. Viçosa: UFV. (in Portuguese)
  • Menegatti, R. D., A. S. Pereira, L. Oliveira, A. O. S. Dorneles, D. Dutra, and S. Deuner. 2017. Different zinc concentrations on the development of Phaseolus vulgaris L. plants. Evidência - Ciência e Biotecnologia 17 (1):23–32. doi:10.18593/eba.v17i1.12923.
  • Minnocci, A., A. Francini, S. Romeo, A. D. Sgrignuoli, G. Povero, and L. Sebastiani. 2018. Zn-localization and anatomical changes in leaf tissues of green beans (Phaseolus vulgaris L.) following foliar application of Zn-lignosulfonate and ZnEDTA. Scientia Horticulturae 231:15–21. doi:10.1016/j.scienta.2017.12.002.
  • Mohsenzadeh, S., and S. S. Moosavian. 2017. Zinc sulphate and nano-zinc oxide effects on some physiological parameters of Rosmarinus officinalis. American Journal of Plant Sciences 08 (11):2635–49. doi:10.4236/ajps.2017.811178.
  • Montalvo, D., F. Degryse, R. da Silva, R. Baird, and M. McLaughlin. 2016. Agronomic effectiveness of zinc sources as micronutrient fertilizers. Advances in Agronomy 139:215–67. doi:10.1016/bs.agron.2016.05.004.
  • Oliveira, F. C., C. G. S. Benett, K. S. S. Benett, L. M. Silva, and B. C. Vieira. 2017. Different doses and times of zinc application in the soybean crop. Revista DE Agricultura Neotropical 4 (5):28–35. doi:10.32404/rean.v4i5.2188.
  • Oliveira, S. S. C., E. S. Bueno, D. B. Bottega, V. D. G. Ponciano, and S. J. S. Cruz. 2020. Selection of snap beans progenies to improve physiological quality of seeds. Semina: Ciências Agrárias 41 (5):2003–14. doi:10.5433/1679-0359.2020v41n5supl1p2003.
  • Osorio, C., G. C. M. Teixeira, R. F. Barreto, C. N. S. Campos, A. J. F. Leal, P. E. Teodoro, and R. D. Prado. 2020. Macronutrient deficiency in snap bean considering physiological, nutritional, and growth aspects. PLoS One 15 (6):e0234512. doi:10.1371/journal.pone.0234512.
  • Pandey, N., B. Gupta, and G. C. Pathak. 2013. Foliar application of Zn at flowering stage improves plant’s performance, yield and yield attributes of black gram.
  • Prado, R. d M. 2021. Zinc. In Mineral nutrition of tropical plants, ed. Renato de Mello Prado, 191–202. Cham: Springer International Publishing.
  • Queiroga, J., E. Romano, J. Souza, and É. Miglioranza. 2003. Model to estimate the leaf area of snap bean. Horticultura Brasileira 21 (1):64–8. doi:10.1590/S0102-05362003000100013.
  • Rehman, A., M. Farooq, L. Ozturk, M. Asif, and K. H. M. Siddique. 2018. Zinc nutrition in wheat-based cropping systems. Plant and Soil 422 (1–2):283–315. doi:10.1007/s11104-017-3507-3.
  • Rehman, A., M. Farooq, M. Asif, and L. Ozturk. 2019. Supra-optimal growth temperature exacerbates adverse effects of low Zn supply in wheat. Journal of Plant Nutrition and Soil Science 182 (4):656–66. doi:10.1002/jpln.201800654.
  • Sadeghzadeh, B. 2013. A review of zinc nutrition and plant breeding. Journal of Soil Science and Plant Nutrition 13 (4):905–27. doi:10.4067/S0718-95162013005000072.
  • Samreen, T., H. U. Shah, S. Ullah, and M. Javid. 2017. Zinc effect on growth rate, chlorophyll, protein and mineral contents of hydroponically grown mungbeans plant (Vigna radiata). Arabian Journal of Chemistry 10:S1802–S7. doi:10.1016/j.arabjc.2013.07.005.
  • Seif, Y. I. A., S. E.-D M. El-Miniawy, N. A. Abu El-Azm, and A. Z. Hegazi. 2016. Response of snap bean growth and seed yield to seed size, plant density and foliar application with algae extract. Annals of Agricultural Sciences 61 (2):187–99. doi:10.1016/j.aoas.2016.09.001.
  • Silva, C., F. Silva-Filho, A. Santos, A. Coscione, A. Vitti, A. Boaretto, J. Coelho, R. Bvan, C. Silva, and C. Abreu. 2009. Manual of chemical analysis of soils, plants and fertilizers. Brasília: Embrapa Technological Information. (In Portuguese)
  • Singh, P., A. Shukla, S. Behera, and P. Tiwari. 2019. Zinc Application Enhances Superoxide Dismutase and Carbonic Anhydrase Activities in Zinc-Efficient and Zinc-Inefficient Wheat Genotypes. Journal of Soil Science and Plant Nutrition 19 (3):477–87. doi:10.1007/s42729-019-00038-7.
  • Sousa, D. d, and E. Lobato. 2004. Cerrado: Soil correction and fertilization. Planaltina: Embrapa Cerrados. (in Portuguese)
  • Staff, S. S. 2003. Keys to soil taxonomy Department of Agriculture: Natural Resources Conservation Service.
  • Suganya, A., A. Saravanan, and N. Manivannan. 2020. Role of Zinc Nutrition for Increasing Zinc Availability, Uptake, Yield, and Quality of Maize (Zea Mays L.) Grains: An Overview. Communications in Soil Science and Plant Analysis 51 (15):2001–21. doi:10.1080/00103624.2020.1820030.
  • Taiz, L., E. Zeiger, I. M. Møller, and A. Murphy. 2017. Plant physiology and development: Artmed Editora. (in Portuguese
  • Terrin, G., R. Berni Canani, M. Di Chiara, A. Pietravalle, V. Aleandri, F. Conte, and M. De Curtis. 2015. Zinc in Early Life: A Key Element in the Fetus and Preterm Neonate. Nutrients 7 (12):10427–46. doi:10.3390/nu7125542.
  • Wang, X., X. Yang, S. Chen, Q. Li, W. Wang, C. Hou, X. Gao, L. Wang, and S. Wang. 2016. Zinc Oxide Nanoparticles Affect Biomass Accumulation and Photosynthesis in Arabidopsis. Frontiers in Plant Science 6:1243. doi:10.3389/fpls.2015.01243.
  • White, P., and P. Brown. 2010. Plant nutrition for sustainable development and global health. Annals of Botany 105 (7):1073–80. doi:10.1093/aob/mcq085.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.