120
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Seed priming with plant growth-promoting rhizobacteria and supplementation of culture medium with biochar alleviated salinity damages in Prosopis koelziana seedlings

, , &
Pages 542-555 | Received 25 Jul 2022, Accepted 30 Oct 2023, Published online: 15 Nov 2023

References

  • Abbas, T., M. Rizwan, S. Ali, M. Adrees, M. Zia-Ur-Rehman, M. F. Qayyum, Y. S. Ok, and G. Murtaza. 2018. Effect of biochar on alleviation of cadmium toxicity in wheat (Triticum aestivum L.) grown on Cd-contaminated saline soil. Environmental Science and Pollution Research International 25 (26):25668–80. doi:10.1007/s11356-017-8987-4.
  • Abd El-Ghany, T., Y. Masrahi, A. Mohamed, A. Abboud, M. Alawlaqi, and A. Elhussieny. 2015. Maize (Zea mays L.) growth and metabolic dynamics with plant growth-promoting rhizobacteria under salt stresses. Journal of Plant Pathology and Microbiology 6 (9):305. doi:10.4172/2157-7471.1000305.
  • Adejumo, S., M. Owolabi, and I. Odesola. 2016. Agro-physiologic effects of compost and biochar produced at different temperatures on growth, photosynthetic pigment and micronutrients uptake of maize crop. African Journal of Agricultural Research 11 (8):661–73. doi:10.5897/AJAR2015.9895.
  • Akhtar, S. S., M. N. Andersen, and F. Liu. 2015. Residual effects of biochar on improving growth, physiology and yield of wheat under salt stress. Agricultural Water Management 158:61–8. doi:10.1016/j.agwat.2015.04.010.
  • Akhtar, S. S., M. N. Andersen, M. Naveed, Z. A. Zahir, and F. Liu. 2015. Interactive effect of biochar and plant growth-promoting bacterial endophytes on ameliorating salinity stress in maize. Functional Plant Biology: FPB 42 (8):770–81. doi:10.1071/FP15054.
  • Amini, S., H. Ghadiri, C. Chen, and P. Marschner. 2016. Salt-affected soils, reclamation, carbon dynamics, and biochar: A review. Journal of Soils and Sediments 16 (3):939–53. doi:10.1007/s11368-015-1293-1.
  • Amirjani, M. R. 2010. Effect of salinity stress on growth, sugar content, pigments and enzyme activity of rice. International Journal of Botany 7 (1):73–81. doi:10.3923/ijb.2011.73.81.
  • Ashraf, M., and M. R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany 59 (2):206–16. doi:10.1016/j.envexpbot.2005.12.006.
  • Ashraf, M., and P. Harris. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Science 166 (1):3–16. doi:10.1016/j.envexpbot.2005.12.006.
  • Ashraf Ganjouii, F., F. Nasibi, K. M. Kalantari, and F. Ahmadi Mousavi. 2023. Effect of seed priming with selenium nanoparticles and plant growth promoting rhizobacteria on improving Quinoa seedling growth under salinity stress. Journal of Plant Process and Function 11 (52):65–73.
  • Attia, H., K. H. Alamer, C. Ouhibi, S. Oueslati, and M. Lachaal. 2019. Interaction between salt stress and drought stress on some physiological parameters in two pea cultivars. International Journal of Botany 16 (1):1–8. doi:10.3923/ijb.2020.1.8.
  • Attia, H. 2023. Physiological responses of pea plants to salinity and gibberellic acid. Phyton 92 (1):149–64. doi:10.32604/phyton.2022.022363.
  • Bano, A., and M. Fatima. 2009. Salt tolerance in Zea mays (L). following inoculation with Rhizobium and Pseudomonas. Biology and Fertility of Soils 45 (4):405–13. doi:10.1007/s00374-008-0344-9.
  • Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water stress studies. Plant and Soil 39 (1):205–7. doi:10.1007/BF00018060.
  • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254. doi:10.1016/0003-2697(76)90527-3.
  • Burkart, A. 1976. A monograph of the genus Prosopis (Leguminosae subfam. Mimosoideae). Journal of the Arnold Arboretum 57 (4):450–525. doi:10.5962/p.185864.
  • Chakraborti, S., K. Bera, S. Sadhukhan, and P. Dutta. 2022. Bio-priming of seeds: Plant stress management and its underlying cellular, biochemical and molecular mechanisms. Plant Stress 3:100052. doi:10.1016/j.stress.2021.100052.
  • Campbell, C. R., and C. O. Plank. 1998. Preparation of plant tissue for laboratory analysis. In Handbook of reference methods for plant analysis, edited by Y. P. Kalra, 37–49. Boca Raton, FL: CRC Press. ISBN 13: 978-1-57444-124-6.
  • De La Torre-Ruiz, N., V. M. Ruiz-Valdiviezo, C. I. Rincón-Molina, M. Rodríguez-Mendiola, C. Arias-Castro, F. A. Gutiérrez-Miceli, H. Palomeque-Dominguez, and R. Rincón-Rosales. 2016. Effect of plant growth-promoting bacteria on the growth and fructan production of Agave americana L. Brazilian Journal of Microbiology 47 (3):587–96. doi:10.1016/j.bjm.2016.04.010.
  • Do Amaral, F. P., V. C. Pankievicz, A. C. M. Arisi, E. M. de Souza, F. Pedrosa, and G. Stacey. 2016. Differential growth responses of Brachypodium distachyon genotypes to inoculation with plant growth promoting rhizobacteria. Plant Molecular Biology 90 (6):689–97. doi:10.1007/s11103-016-0449-8.
  • Emtehani, M., and M. Elmi. 2006. The ecological studies of Prosopis koelziana in south of Iran. Desert 11:1–11.
  • Fales, F. W. 1951. The assimilation and degradation of carbohydrates by yeast cells. The Journal of Biological Chemistry 193 (1):113–24. doi:10.1016/S0021-9258(19)52433-4.
  • Figueiredo, M., d V. B. L. Seldin, F. F. de Araujo, and R. d L. R. Mariano. 2011. Plant growth promoting rhizobacteria: Fundamentals and applications. In Plant Growth and Health Promoting Bacteria, edited by D. Maheshwari, 21–43. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-13612-2_2.
  • Glaser, B., J. Lehmann, and W. Zech. 2002. Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal–a review. Biology and Fertility of Soils 35 (4):219–30. doi:10.1007/s00374-002-0466-4.
  • Goswami, D., J. N. Thakker, and P. C. Dhandhukia. 2016. Portraying mechanics of plant growth promoting rhizobacteria (PGPR): A review. Cogent Food & Agriculture 2 (1):1127500. doi:10.1080/23311932.2015.1127500.
  • Hafez, E. M., A. S. Alsohim, M. Farig, A. E.-D. Omara, E. Rashwan, and M. M. Kamara. 2019. Synergistic effect of biochar and plant growth promoting rhizobacteria on alleviation of water deficit in rice plants under salt-affected soil. Agronomy 9 (12):847. doi:10.3390/agronomy9120847.
  • Hamid, B., M. Zaman, S. Farooq, S. Fatima, R. Z. Sayyed, Z. A. Baba, T. A. Sheikh, M. S. Reddy, H. El Enshasy, A. Gafur, et al. 2021. Bacterial plant biostimulants: A sustainable way towards improving growth, productivity, and health of crops. Sustainability 13 (5):2856. doi:10.3390/su13052856.
  • Hasanuzzaman, M., M. H. M. B. Bhuyan, F. Zulfiqar, A. Raza, S. M. Mohsin, J. A. Mahmud, M. Fujita, and V. Fotopoulos. 2020. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 9 (8):681. doi:10.3390/antiox9080681.
  • Hussien Ibrahim, M. E., A. Y. Adam Ali, G. Zhou, A. M. Ibrahim Elsiddig, G. Zhu, N. E. Ahmed Nimir, and I. Ahmad. 2020. Biochar application affects forage sorghum under salinity stress. Chilean Journal of Agricultural Research 80 (3):317–25. doi:10.4067/S0718-58392020000300317.
  • Inal, A., A. Gunes, O. Sahin, M. Taskin, and E. Kaya. 2015. Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil Use and Management 31 (1):106–13. doi:10.1111/sum.12162.
  • Isayenkov, S. V., and F. J. Maathuis. 2019. Plant salinity stress: Many unanswered questions remain. Frontiers in Plant Science 10:80. doi:10.3389/fpls.2019.00080.
  • Jaleel, C. A., K. Riadh, R. Gopi, P. Manivannan, J. Inès, H. J. Al-Juburi, Z. Chang-Xing, S. Hong-Bo, and R. Panneerselvam. 2009. Antioxidant defense responses: Physiological plasticity in higher plants under abiotic constraints. Acta Physiologiae Plantarum 31 (3):427–36. doi:10.1007/s11738-009-0275-6.
  • Jha, Y., and R. Subramanian. 2013. Paddy plants inoculated with PGPR show better growth physiology and nutrient content under saline condition. Chilean Journal of Agricultural Research 73 (3):213–9. doi:10.4067/S0718-58392013000300002.
  • Johnson, R., and J. T. Puthur. 2021. Seed priming as a cost-effective technique for developing plants with cross tolerance to salinity stress. Plant Physiology and Biochemistry 162:247–57. doi:10.1016/j.plaphy.2021.02.034.
  • Joshi, S., S. Chandra, and L. Palni. 2007. Differences in photosynthetic characteristics and accumulation of osmoprotectants in saplings of evergreen plants grown inside and outside a glasshouse during the winter season. Photosynthetica 45 (4):594–600. doi:10.1007/s11099-007-0102-5.
  • Junna, S., F. He, H. Shao, Z. Zhang, and G. Xu. 2016. Effects of biochar application on Suaeda salsa growth and saline soil properties. Environmental Earth Sciences 75 (8):630–636. doi:10.1007/s12665-016-5440-9.
  • Kammann, C. I., S. Linsel, J. W. Gößling, and H.-W. Koyro. 2011. Influence of biochar on drought tolerance of Chenopodium quinoa Willd and on soil–plant relations. Plant and Soil 345 (1–2):195–210. doi:10.1007/s11104-011-0771-5.
  • Kohler, J., J. A. Hernández, F. Caravaca, and A. Roldán. 2009. Induction of antioxidant enzymes is involved in the greater effectiveness of a PGPR versus AM fungi with respect to increasing the tolerance of lettuce to severe salt stress. Environmental and Experimental Botany 65 (2–3):245–52. doi:10.1016/j.envexpbot.2008.09.008.
  • Kumar, A., S. Singh, A. K. Gaurav, S. Srivastava, and J. P. Verma. 2020. Plant growth-promoting bacteria: Biological tools for the mitigation of salinity stress in plants. Frontiers in Microbiology 11:1216. doi:10.3389/fmicb.2020.01216.
  • Lack, S., F. Ghooshchi, and H. Hadi. 2013. The effect of crop growth enhancer bacteria on yield and yield components of safflower (Carthamus Tinctorius L). International Journal of Farming and Allied Sciences 2 (20):809–15.
  • Moradi, S., M. H. Rasouli-Sadaghiani, E. Sepehr, H. Khodaverdiloo, and M. Barin. 2019. Soil nutrients status affected by simple and enriched biochar application under salinity conditions. Environmental Monitoring and Assessment 191 (4):257. doi:10.1007/s10661-019-7393-4.
  • Nakano, Y., and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant and Cell Physiology 22:867–80. doi:10.1093/oxfordjournals.pcp.a076232.
  • Olanrewaju, O. S., B. R. Glick, and O. O. Babalola. 2017. Mechanisms of action of plant growth promoting bacteria. World Journal of Microbiology & Biotechnology 33 (11):197. doi:10.1007/s11274-017-2364-9.
  • Palansooriya, K. N., Y. S. Ok, Y. M. Awad, S. S. Lee, J. K. Sung, A. Koutsospyros, and D. H. Moon. 2019. Impacts of biochar application on upland agriculture: A review. Journal of Environmental Management 234:52–64. doi:10.1016/j.jenvman.2018.12.085.
  • Parida, A. K., and A. B. Das. 2005. Salt tolerance and salinity effects on plants: A review. Ecotoxicology and Environmental Safety 60 (3):324–49. doi:10.1016/j.ecoenv.2004.06.010.
  • Plewa, M. J., S. R. Smith, and E. D. Wagner. 1991. Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation Research 247 (1):57–64. doi:10.1016/0027-5107(91)90033-k.
  • Ruelland, E., M. Vaultier, A. Zachowski, and V. Hurry. 2009. Cold signaling and cold acclimation in plants. Advances in Botanical Research 49:35–150. doi:10.1016/S0065-2296(08)00602-2.
  • Saifullah, S., A. Dahlawi, A. Naeem, Z. Rengel, and R. Naidu. 2018. Biochar application for the remediation of salt-affected soils: Challenges and opportunities. The Science of the Total Environment 625:320–335. doi:10.1016/j.scitotenv.2017.12.257.
  • Sandhya, V., S. Z. Ali, M. Grover, G. Reddy, and B. Venkateswarlu. 2010. Effect of plant growth promoting Pseudomonas spp. on compatible solutes, antioxidant status and plant growth of maize under drought stress. Plant Growth Regulation 62 (1):21–30. doi:10.1007/s10725-010-9479-4.
  • Seleiman, M. F., W. M. Semida, M. M. Rady, G. F. Mohamed, K. A. Hemida, B. A. Alhammad, M. M. Hassan, and A. Shami. 2020. Sequential application of antioxidants rectifies ion imbalance and strengthens antioxidant systems in salt-stressed cucumber. Plants 9 (12):1783. doi:10.3390/plants9121783.
  • Shahrajabian, M. H., C. Chaski, N. Polyzos, and S. A. Petropoulos. 2021. Biostimulants application: A low input cropping management tool for sustainable farming of vegetables. Biomolecules 11 (5):698. doi:10.3390/biom11050698.
  • Shukla, P. S., P. K. Agarwal, and B. Jha. 2012. Improved salinity tolerance of Arachis hypogaea (L.) by the interaction of halotolerant Plant-Growth-Promoting Rhizobacteria. Journal of Plant Growth Regulation 31 (2):195–206. doi:10.1007/s00344-011-9231-y.
  • Szabados, L., and A. Savouré. 2010. Proline: A multifunctional amino acid. Trends in Plant Science 15 (2):89–97. doi:10.1016/j.tplants.2009.11.009.
  • Usman, A. R. A., M. I. Al-Wabel, Y. S. Ok, A. Al-Harbi, M. Wahb-Allah, A. H. EL-Naggar, M. Ahmad, A. Al-Faraj, and A. Al-Omran. 2016. Conocarpus biochar induces changes in soil nutrient availability and tomato growth under saline irrigation. Pedosphere 26 (1):27–38. doi:10.1016/S1002-0160(15)60019-4.
  • Verbruggen, N., and C. Hermans. 2008. Proline accumulation in plants: A review. Amino Acids 35 (4):753–9. doi:10.1007/s00726-008-0061-6.
  • Weisany, W., Y. Sohrabi, G. Heidari, A. Siosemardeh, and K. Ghassemi-Golezani. 2012. Changes in antioxidant enzymes activity and plant performance by salinity stress and zinc application in soybean (Glycine max L.). Plant Omics Journal 5:60–67. doi:10.3316/informit.182984019960534.
  • Yadav, S., M. Irfan, A. Ahmad, and S. Hayat. 2011. Causes of salinity and plant manifestations to salt stress: A review. Journal of Environmental Biology 32 (5):667–85.
  • Yue, Y., W. N. Guo, Q. M. Lin, G. T. Li, and X. R. Zhao. 2016. Improving salt leaching in a simulated saline soil column by three biochars derived from rice straw (Oryza sativa L.), sunflower straw (Helianthus annuus), and cow manure. Journal of Soil and Water Conservation 71 (6):467–75. doi:10.2489/jswc.71.6.467.
  • Zare, S., A. Tavili, and M. J. Darini. 2011. Effects of different treatments on seed germination and breaking seed dormancy of Prosopis koelziana and Prosopis Juliflora. Journal of Forestry Research 22 (1):35–8. doi:10.1007/s11676-011-0121-8.
  • Zheng, H., X. Wang, L. Chen, Z. Wang, Y. Xia, Y. Zhang, H. Wang, X. Luo, and B. Xing. 2018. Enhanced growth of halophyte plants in biochar-amended coastal soil: Roles of nutrient availability and rhizosphere microbial modulation. Plant, Cell & Environment 41 (3):517–32. doi:10.1111/pce.12944.
  • Zulfiqar, F., and M. Ashraf. 2021. Nanoparticles potentially mediate salt stress tolerance in plants. Plant Physiology and Biochemistry 160:257–68. doi:10.1016/j.plaphy.2021.01.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.