45
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Improving the growth, yield and iron concentration of strawberry using sodium hydrosulfide (NaHS) under soilless culture

ORCID Icon & ORCID Icon
Pages 786-796 | Received 27 Jun 2020, Accepted 03 Nov 2023, Published online: 20 Nov 2023

References

  • Agarwal, S., R. Sairam, R. Meena, A. Tyagi, and G. Srivastava. 2005. Effect of excess and deficient levels of iron and copper on oxidative stress and antioxidant enzymes activity in wheat. Journal of Plant Sciences 1 (1):86–97. doi: 10.3923/jps.2006.86.97.
  • Alam, S., S. Kamei, and S. Kawai. 2001. Effect of iron deficiency on the chemical composition of the xylem sap of barley. Soil Science and Plant Nutrition 47 (3):643–9. doi: 10.1080/00380768.2001.10408428.
  • Ali, B., R. A. Gill, S. Yang, M. B. Gill, S. Ali, M. T. Rafiq, and W. Zhou. 2014. Hydrogen sulfide alleviates cadmium-induced morpho-physiological and ultrastructural changes in Brassica napus. Ecotoxicology and Environmental Safety 110:197–207. doi: 10.1016/j.ecoenv.2014.08.027.
  • Álvarez, C., I. García, I. Moreno, M. E. Pérez-Pérez, J. L. Crespo, L. C. Romero, and C. Gotor. 2012. Cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile in Arabidopsis. The Plant Cell 24 (11):4621–34. doi: 10.1105/tpc.112.105403.
  • Amooaghaie, R., F. Zangene-Madar, and S. Enteshari. 2017. Role of two-sided crosstalk between NO and H2S on improvement of mineral homeostasis and antioxidative defense in Sesamum indicum under lead stress. Ecotoxicology and Environmental Safety 139:210–8. doi: 10.1016/j.ecoenv.2017.01.037.
  • Aroca, A., C. Gotor, and L. C. Romero. 2018. Hydrogen sulfide signaling in plants: Emerging roles of protein persulfidation. Frontiers in Plant Science 9:1369. doi: 10.3389/fpls.2018.01369.
  • Briat, J.-F., C. Curie, and F. Gaymard. 2007. Iron utilization and metabolism in plants. Current Opinion in Plant Biology 10 (3):276–82. doi: 10.1016/j.pbi.2007.04.003.
  • Carter, J. M., E. M. Brown, J. P. Grace, A. K. Salem, E. E. Irish, and N. B. Bowden. 2018. Improved growth of pea, lettuce, and radish plants using the slow release of hydrogen sulfide from GYY-4137. PloS One 13 (12):e0208732. doi: 10.1371/journal.pone.0208732.
  • Cheng, W., L. Zhang, C. Jiao, M. Su, T. Yang, L. Zhou, R. Peng, R. Wang, and C. Wang. 2013. Hydrogen sulfide alleviates hypoxia-induced root tip death in Pisum sativum. Plant Physiology and Biochemistry: PPB 70:278–86. doi: 10.1016/j.plaphy.2013.05.042.
  • Chen, L., Y. Han, H. Jiang, H. Korpelainen, and C. Li. 2011b. Nitrogen nutrient status induces sexual differences in responses to cadmium in Populus yunnanensis. Journal of Experimental Botany 62 (14):5037–50. doi: 10.1093/jxb/err203.
  • Chen, J., F.-H. Wu, Y.-T. Shang, W.-H. Wang, W.-J. Hu, M. Simon, X. Liu, Z.-P. Shangguan, and H.-L. Zheng. 2015. Hydrogen sulphide improves adaptation of Zea mays seedlings to iron deficiency. Journal of Experimental Botany 66 (21):6605–22. doi: 10.1093/jxb/erv368.
  • Chen, J., F.-H. Wu, W.-H. Wang, C.-J. Zheng, G.-H. Lin, X.-J. Dong, J.-X. He, Z.-M. Pei, and H.-L. Zheng. 2011a. Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. Journal of Experimental Botany 62 (13):4481–93. doi: 10.1093/jxb/err145.
  • Christou, A., P. Filippou, G. A. Manganaris, and V. Fotopoulos. 2014. Sodium hydrosulfide induces systemic thermotolerance to strawberry plants through transcriptional regulation of heat shock proteins and aquaporin. BMC Plant Biology 14 (1):42. doi: 10.1186/1471-2229-14-42.
  • Christou, A., G. A. Manganaris, I. Papadopoulos, and V. Fotopoulos. 2013. Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. Journal of Experimental Botany 64 (7):1953–66. doi: 10.1093/jxb/ert055.
  • Dhindsa, R. S., P. Plumb-Dhindsa, and T. A. Thorpe. 1981. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany 32 (1):93–101. doi: 10.1093/jxb/32.1.93.
  • García‐Mata, C., and L. Lamattina. 2010. Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. The New Phytologist 188 (4):977–84. doi: 10.1111/j.1469-8137.2010.03465.x.
  • Ghasemi-Fasaei, R., and A. Ronaghi. 2008. Interaction of iron with copper, zinc, and manganese in wheat as affected by iron and manganese in a calcareous soil. Journal of Plant Nutrition 31 (5):839–48. doi: 10.1080/01904160802043148.
  • Giannopolitis, C. N., and S. K. Ries. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology 59 (2):309–14. doi: 10.1104/pp.59.2.309.
  • Gotor, C., I. García, J. L. Crespo, and L. C. Romero. 2013. Sulfide as a signaling molecule in autophagy. Autophagy 9 (4):609–11. doi: 10.4161/auto.23460.
  • Graziano, M., and L. Lamattina. 2007. Nitric oxide accumulation is required for molecular and physiological responses to iron deficiency in tomato roots. The Plant Journal: For Cell and Molecular Biology 52 (5):949–60. doi: 10.1111/j.1365-313x.2007.03283.x.
  • Gulen, H., and A. Eris. 2004. Effect of heat stress on peroxidase activity and total protein content in strawberry plants. Plant Science 166 (3):739–44. doi: 10.1016/j.plantsci.2003.11.014.
  • Jiang, J.-L., Y. Tian, L. Li, M. Yu, R.-P. Hou, and X.-M. Ren. 2019. H2S alleviates salinity stress in cucumber by maintaining the Na+/K + balance and regulating H2S metabolism and oxidative stress response. Frontiers in Plant Science 10:678. doi: 10.3389/fpls.2019.00678.
  • Jin, Z., L. Sun, G. Yang, and Y. Pei. 2018. Hydrogen sulfide regulates energy production to delay leaf senescence induced by drought stress in Arabidopsis. Frontiers in Plant Science 9:1722. doi: 10.3389/fpls.2018.01722.
  • Jin, Z., S. Xue, Y. Luo, B. Tian, H. Fang, H. Li, and Y. Pei. 2013. Hydrogen sulfide interacting with abscisic acid in stomatal regulation responses to drought stress in Arabidopsis. Plant Physiology and Biochemistry: PPB 62:41–6. doi: 10.1016/j.plaphy.2012.10.017.
  • Jones, J. B., Jr., and V. W. Case. 1990. Sampling, handling and analyzing plant tissue samples. In Testing and plant analysis, book series 3, ed. R. L. Westerman, 389–427. Madison: Soil Science Society of America.
  • Junglee, S., L. Urban, H. Sallanon, and F. Lopez-Lauri. 2014. Optimized assay for hydrogen peroxide determination in plant tissue using potassium iodide. American Journal of Analytical Chemistry 5 (11):730–6. doi: 10.4236/ajac.2014.511081.
  • Kaya, C., and M. Ashraf. 2019. The mechanism of hydrogen sulfide mitigation of iron deficiency-induced chlorosis in strawberry (Fragaria × ananassa) plants. Protoplasma 256 (2):371–82. doi: 10.1007/s00709-018-1298-x.
  • Kim, S. A., and M. L. Guerinot. 2007. Mining iron: Iron uptake and transport in plants. FEBS Letters 581 (12):2273–80. doi: 10.1016/j.febslet.2007.04.043.
  • Laureano-Marín, A. M., I. Moreno, L. C. Romero, and C. Gotor. 2016. Negative regulation of autophagy by sulfide is independent of reactive oxygen species. Plant Physiology 171 (2):1378–91. doi: 10.1104/pp.16.00110.
  • Lisjak, M., N. Srivastava, T. Teklic, L. Civale, K. Lewandowski, I. Wilson, M. E. Wood, M. Whiteman, and J. T. Hancock. 2010. A novel hydrogen sulfide donor causes stomatal opening and reduces nitric oxide accumulation. Plant Physiology and Biochemistry: PPB 48 (12):931–5. doi: 10.1016/j.plaphy.2010.09.016.
  • Mittler, R., S. Vanderauwera, M. Gollery, and F. Van Breusegem. 2004. Reactive oxygen gene network of plants. Trends in Plant Science 9 (10):490–8. doi: 10.1016/j.tplants.2004.08.009.
  • Miyake, C., M. Miyata, Y. Shinzaki, and K.-I. Tomizawa. 2005. CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves—relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. Plant & Cell Physiology 46 (4):629–37. doi: 10.1093/pcp/pci067.
  • Mustafa, A. K., M. M. Gadalla, N. Sen, S. Kim, W. Mu, S. K. Gazi, R. K. Barrow, G. Yang, R. Wang, and S. H. Snyder. 2009. H2S signals through protein S-sulfhydration. Science Signaling 2 (96):ra72. doi: 10.1126/scisignal.2000464.
  • Pestana, M., A. D. Varennes, M. G. Miguel, and P. Correia. 2010. Consequences of iron deficiency on fruit quality in citrus and stawberry. In Environmentally friendly and safe technologies for quality of fruit and vegetables, 90–4. Faro: Universidade do Algarve.
  • Ramirez, L., M. Simontacchi, I. Murgia, E. Zabaleta, and L. Lamattina. 2011. Nitric oxide, nitrosyl iron complexes, ferritin and frataxin: A well equipped team to preserve plant iron homeostasis. Plant Science: An International Journal of Experimental Plant Biology 181 (5):582–92. doi: 10.1016/j.plantsci.2011.04.006.
  • Rao, K. M., and T. Sresty. 2000. Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses. Plant Science: An International Journal of Experimental Plant Biology 157 (1):113–128. doi: 10.1016/s0168-9452(00)00273-9.
  • Santi, S., and W. Schmidt. 2009. Dissecting iron deficiency‐induced proton extrusion in Arabidopsis roots. The New Phytologist 183 (4):1072–84. doi: 10.1111/j.1469-8137.2009.02908.x.
  • Terry, N. 1980. Limiting factors in photosynthesis: I. Use of iron stress to control photochemical capacity in vivo. Plant Physiology 65 (1):114–20. doi: 10.1104/pp.65.1.114.
  • Terry, N., and J. Abadía. 1986. Function of iron in chloroplasts. Journal of Plant Nutrition 9 (3):609–46. doi: 10.1080/01904168609363470.
  • Thoiron, S., N. Pascal, and J. F. Briat. 1997. Impact of iron deficiency and iron re‐supply during the early stages of vegetative development in maize (Zea mays L.). Plant, Cell & Environment 20 (8):1051–60. doi: 10.1111/j.1365-3040.1997.tb00681.x.
  • Thompson, C., G. Kats, and R. Lennox. 1979. Effects of fumigating crops with hydrogen sulfide or sulfur dioxide. Calif. Agr 33:9–10.
  • Winder, T. L., and J. N. Nishio. 1995. Early iron deficiency stress response in leaves of sugar beet. Plant Physiology 108 (4):1487–94. doi: 10.1104/pp.108.4.1487.
  • Zhang, H., Z. Q. Tan, L. Y. Hu, S. H. Wang, J. P. Luo, and R. L. Jones. 2010. Hydrogen sulfide alleviates aluminum toxicity in germinating wheat seedlings. Journal of Integrative Plant Biology 52 (6):556–67. doi: 10.1111/j.1744-7909.2010.00946.x.
  • Zhang, H., Y.-K. Ye, S.-H. Wang, J.-P. Luo, J. Tang, and D.-F. Ma. 2009. Hydrogen sulfide counteracts chlorophyll loss in sweetpotato seedling leaves and alleviates oxidative damage against osmotic stress. Plant Growth Regulation 58 (3):243–50. doi: 10.1007/s10725-009-9372-1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.