60
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Increasing the resistance of the hollyhock plant to cold stress: silicon or selenium

&
Pages 1110-1129 | Received 16 Aug 2022, Accepted 03 Jan 2024, Published online: 22 Jan 2024

References

  • Abbas, S. M. 2012. Effects of low temperature and selenium application on growth and the physiological changes in sorghum seedlings. Journal of Stress Physiology & Biochemistry 8 (1):268–286.
  • Adhikari, L., R. Baral, D. R. Paudel, D. Min, S. O. Makaju, H. Poudel, D. Min, S. O. Makaju, H. Poudel, J. P. Acharya, et al. 2022. Cold stress in plants: Strategies to improve cold tolerance in forage species. Plant Stress 4:100081. doi:10.1016/j.stress.2022.100081.
  • Agarie, S., H. Uchida, W. Agata, F. Kubota, and P. B. Kaufman. 1998. Effects of silicon on transpiration and leaf conductance in rice plants (Oryza sativa L.). Plant Production Science 1 (2):89–95. doi:10.1626/pps.1.89.
  • Ahmadi, M., A. K. Rad, Z. Rajaei, M.-A.-R. Hadjzadeh, N. Mohammadian, and N. S. Tabasi. 2012. Alcea rosea root extract as a preventive and curative agent in ethylene glycol-induced urolithiasis in rats. Indian Journal of Pharmacology 44 (3):304–307. doi:10.4103/0253-7613.96298.
  • Amiripour, A., M. G. Jahromi, M. K. Soori, and A. Mohammadi Torkashvand. 2021. Changes in essential oil composition and fatty acid profile of coriander (Coriandrum sativum L.) leaves under salinity and foliar-applied silicon. Industrial Crops and Products 168:113599. doi:10.1016/j.indcrop.2021.113599.
  • Ayala, A., M. F. Muñoz, and S. Argüelles. 2014. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Medicine and Cellular Longevity 2014:360438–360441. doi:10.1155/2014/360438.
  • Azimi, F., M. Oraei, G. Gohari, S. Panahirad, and A. Farmarzi. 2021. Chitosan-selenium nanoparticles (Cs–Se NPs) modulate the photosynthesis parameters, antioxidant enzymes activities and essential oils in Dracocephalum moldavica L. under cadmium toxicity stress. Plant Physiology and Biochemistry: PPB 167:257–268. doi:10.1016/j.plaphy.2021.08.013.
  • Bates, L. S., R. P. Waldren, and I. D. Teare. 1973. Rapid determination of free proline for water studies. Plant and Soil 39 (1):205–207. doi:10.1007/BF00018060.
  • Cao, Q., W. Wang, S. S. Akhtar, F. Yang, F. Kong, Z. Cui, X. Jiang, E. Zhang, and G. Li. 2022. Exogenous Foliar Spray of Selenium (Se) Alleviates Cold Stress by Promoting Photosynthesis and Antioxidant Defense in Waxy Maize doi:10.21203/rs.3.rs-1719103/v1.
  • Chapman, H., and P. Pratt. 1961. Methods of Analysis of Soil, Plants and Water. University of California, Division of Agricultural.Science, USA.
  • Chen, Z. H., G. Chen, F. Dai, Y. Z. Wang, A. Hills, Y. L. Ruan, G. P. Zhang, P. J. Franks, E. Nevo, and M. R. Blatt. 2017. Molecular evolution of grass stomata. Trends in Plant Science 22 (2):124–139. doi:10.1016/j.tplants.2016.09.005.
  • Chongping, H., H. Wenjie, and L. Junlin. 2022. Selenium-and nano-selenium-mediated cold-stress tolerance in crop plants. In Selenium and Nano-Selenium in Environmental Stress Management and Crop Quality Improvement (173–190). Cham: Springer International Publishing.
  • Chu, J., X. Yao, and Z. Zhang. 2010. Responses of wheat seedlings to exogenous selenium supply under cold stress. Biological Trace Element Research 136 (3):355–363. doi:10.1007/s12011-009-8542-3.
  • Dipayan, Sarkar, Prasanta C., Bhowmik, Kalidas, Shetty, Young-In-Kwon,. 2009. Cold acclimation responses of three cool-season turfgrasses and the role of proline-associated pentose phosphate pathway. Journal of the American Society for Horticultural Science 134 (2):210–220. doi:10.21273/JASHS.134.2.210.
  • Donderalp, V., and A. Dursun. 2022. Improvement of frost tolerance in tomato by foliar application of potassium sulphate. Scientia Horticulturae 295:110868. doi:10.1016/j.scienta.2021.110868.
  • Dong, J. Z., Y. Wang, S. H. Wang, L. P. Yin, G. J. Xu, C. Zheng, C. Lei, and M. Z. Zhang. 2013. Selenium increases chlorogenic acid, chlorophyll and carotenoids of Lycium chinense leaves. Journal of the Science of Food and Agriculture 93 (2):310–315. doi:10.1002/jsfa.5758.
  • Dreyer, A., and K. J. Dietz. 2018. Reactive oxygen species and the redox-regulatory network in cold stress acclimation. Antioxidants 7 (11):169. doi:10.3390/antiox7110169.
  • Dubois, M., K. A. Gilles, J. K. Hamilton, P. T. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28 (3):350–356. doi:10.1021/ac60111a017.
  • Elguera, J. C. T., E. Y. Barrientos, K. Wrobel, and K. Wrobel. 2013. Effect of cadmium (Cd (II)), selenium (Se (IV)) and their mixtures on phenolic compounds and antioxidant capacity in Lepidium sativum. Acta Physiologiae Plantarum 35 (2):431–441. doi:10.1007/s11738-012-1086-8.
  • Elsheery, N. I., V. S. J. Sunoj, Y. Wen, J. J. Zhu, G. Muralidharan, and K. F. Cao. 2020. Foliar application of nanoparticles mitigates the chilling effect on photosynthesis and photoprotection in sugarcane. Plant Physiology and Biochemistry: PPB 149:50–60. doi:10.1016/j.plaphy.2020.01.035.
  • Farahani, H., N. A. Sajedi, H. Madani, M. Changizi, and M. R. Naeini. 2021. Effect of foliar-applied silicon on flower yield and essential oil composition of damask rose (Rosa damascena Miller) under water deficit stress. Silicon 13 (12):4463–4472. doi:10.1007/s12633-020-00762-1.
  • Feng, R., C. Wei, and S. Tu. 2013. The roles of selenium in protecting plants against abiotic stresses. Environmental and Experimental Botany 87:58–68. doi:10.1016/j.envexpbot.2012.09.
  • Fujii, J., T. Homma, and T. Osaki. 2022. Superoxide Radicals in the Execution of Cell Death. Antioxidants 11 (3):501. doi:10.3390/antiox11030501.
  • Gao, X., C. Zou, L. Wang, and F. Zhang. 2006. Silicon decreases transpiration rate and conductance from stomata of maize plants. Journal of Plant Nutrition 29 (9):1637–1647. doi:10.1080/01904160600851494.
  • Giannopolitis, C. N., and S. K. Ries. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiology 59 (2):309–314. doi:10.1104/pp.59.2.309.
  • Golubkina, N., L. Logvinenko, D. Konovalov, E. Garsiya, M. Fedotov, A. Alpatov, O. Shevchuk, L. Skrypnik, A. Sekara, and G. Caruso. 2022. Foliar Application of Selenium under Nano Silicon on Artemisia annua: Effects on Yield, Antioxidant Status, Essential Oil, Artemisinin Content and Mineral Composition. Horticulturae 8 (7):597. doi:10.3390/horticulturae8070597.
  • Gong, H., X. Zhu, K. Chen, S. Wang, and C. Zhang. 2005. Silicon alleviates oxidative damage of wheat plants in pots under drought. Plant Science 169 (2):313–321. doi:10.1016/j.plantsci.2005.02.023.
  • Hajiboland, R., N. Moradtalab, Z. Eshaghi, and J. Feizy. 2018. Effect of silicon supplementation on growth and metabolism of strawberry plants at three developmental stages. New Zealand Journal of Crop and Horticultural Science 46 (2):144–161. doi:10.1080/01140671.2017.1373680.
  • Hawrylak-Nowak, B. 2013. Comparative effects of selenite and selenate on growth and selenium accumulation in lettuce plants under hydroponic conditions. Plant Growth Regulation 70 (2):149–157. doi:10.1007/s10725-013-9788-5.
  • He, Y., H. Xiao, H. Wang, Y. Chen, and M. Yu. 2010. Effect of silicon on chilling-induced changes of solutes, antioxidants, and membrane stability in seashore paspalum turfgrass. Acta Physiologiae Plantarum 32 (3):487–494. doi:10.1007/s11738-009-0425-x.
  • Heath, R. L., and L. Packer. 1968. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Archives of Biochemistry and Biophysics 125 (1):189–198. doi:10.1016/0003-9861(68)90654-1.
  • Jan, N., U. Majeed, K. I. Andrabi, and R. John. 2018. Cold stress modulates osmolytes and antioxidant system in Calendula officinalis. Acta Physiologiae Plantarum 40 (4):1–16. doi:10.1007/s11738-018-2649-0.
  • Joudmand, A., and R. Hajiboland. 2019. Silicon mitigates cold stress in barley plants via modifying the activity of apoplasmic enzymes and concentration of metabolites. Acta Physiologiae Plantarum 41 (2):1–13. doi:10.1007/s11738-019-2817-x.
  • Kavi Kishor, P. B., and N. Sreenivasulu. 2014. Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant, Cell & Environment 37;37 (2):300–311. doi:10.1111/pce.12157.
  • Kazan, K., and R. Lyons. 2016. The link between flowering time and stress tolerance. Journal of Experimental Botany 67 (1):47–60. doi:10.1093/jxb/erv441.
  • Khosravan, S., H. Mohammadzadeh-Moghadam, F. Mohammadzadeh, S. A. K. Fadafen, and M. Gholami. 2017. The effect of Hollyhock (Althaea officinalis L) leaf compresses combined with warm and cold compress on breast engorgement in lactating women: A randomized clinical trial. Journal of Evidence-Based Complementary & Alternative Medicine 22 (1):25–30. doi:10.1177/2156587215617106.
  • Kumar, R. R., G. K. Rai, S. Kota, A. Watts, A. Sakhare, S. Kumar, S. Goswami, N. Kapoor, P. Babu, G. P. Mishra, et al. 2023. Fascinating dynamics of silicon in alleviation of heat stress induced oxidative damage in plants. Plant Growth Regulation 100 (2):321–335. doi:10.1007/s10725-022-00879-w.
  • Lang, D. Y., P. X. Fei, G. Y. Cao, X. X. Jia, Y. T. Li, and X. H. Zhang. 2019. Silicon promotes seedling growth and alters endogenous IAA, GA3 and ABA concentrations in Glycyrrhiza uralensis under 100 mM NaCl stress. The Journal of Horticultural Science and Biotechnology 94 (1):87–93. doi:10.1080/14620316.2018.1450097.
  • Lemoine, R., S. La Camera, R. Atanassova, F. Dédaldéchamp, T. Allario, N. Pourtau, J.-L. Bonnemain, M. Laloi, P. Coutos-Thévenot, L. Maurousset, et al. 2013. Source-to-sink transport of sugar and regulation by environmental factors. Frontiers in Plant Science 4:272. doi:10.3389/fpls.2013.00272.
  • Liang, Y., J. Zhu, Z. Li, G. Chu, Y. Ding, J. Zhang, and W. Sun. 2008. Role of silicon in enhancing resistance to freezing stress in two contrasting winter wheat cultivars. Environmental and Experimental Botany 64 (3):286–294. doi:10.1016/j.envexpbot.2008.06.005.
  • Liu, K., S. Li, J. Han, X. Zeng, M. Ling, J. Mao, Y. Li, and J. Jiang. 2021. Effect of selenium on tea (Camellia sinensis) under low temperature: Changes in physiological and biochemical responses and quality. Environmental and Experimental Botany 188:104475. doi:10.1016/j.envexpbot.2021.104475.
  • Liu, J. 2015. Temperature-mediated alterations of the plant apoplast as a mechanism of intracellular freezing stress avoidance., (Doctoral dissertation., University of Saskatchewan).
  • Manivannan, A., P. Soundararajan, S. Muneer, C. H. Ko, and B. R. Jeong. 2016. Silicon mitigates salinity stress by regulating the physiology, antioxidant enzyme activities, and protein expression in Capsicum annuum ‘Bugwang’. BioMed Research International 2016:1–14. doi:10.1155/2016/3076357.
  • Nandagopal, J. G. T., U. N. D. Harinarayanan, S. Raghavan, and S. Girija. 2022. Foliar selenium application mitigates low-temperature stress in chilli (Capsicum annuum L.) seedlings. Energy Nexus 6:100079. doi:10.1016/j.nexus.2022.100079.
  • Nazdar, T., A. Tehranifar, A. Nezami, H. Nemati, and L. Samiei. 2019. Physiological and anatomical responses of calendula (Calendula officinalis L.) cultivars to heat-stress duration. The Journal of Horticultural Science and Biotechnology 94 (3):400–411. doi:10.1080/14620316.2018.153232.
  • Nezami, A., M. S. Bandara, and L. V. Gusta. 2012. An evaluation of freezing tolerance of winter chickpea (Cicer arietinum L.) using controlled freeze tests. Canadian Journal of Plant Science 92 (1):155–161. doi:10.1139/CJPS2011-057.
  • Oraee, A., and A. Tehranifar. 2022. How Do Different Temperature Fluctuations Affect Alcea rosea ‘nigra’ Survival? Iranian Journal of Science and Technology, Transactions A: Science 46 (4):1135–1147. doi:10.1007/s40995-022-01330-5.
  • Oraee, A., A. Tehranifar, A. Nezami, and M. Shoor. 2018. Effects of drought stress on cold hardiness of non-acclimated viola (Viola × wittrockiana ‘Iona Gold with Blotch’) in controlled conditions. Scientia Horticulturae 238:98–106. doi:10.1016/j.scienta.2018.04.027.
  • Partelli, F. L., H. D. Vieira, A. P. Viana, P. Batista-Santos, A. P. Rodrigues, A. E. Leitão, and J. C. Ramalho. 2009. Low temperature impact on photosynthetic parameters of coffee genotypes. Pesquisa Agropecuária Brasileira 44 (11):1404–1415. doi:10.1590/S0100-204X2009001100006.
  • Pazurkiewicz-Kocot, K. R. Y. S. T. Y. N. A., W. I. T. O. L. D. Galas, and A. N. D. R. Z. E. J. Kita. 2003. The effect of selenium on the accumulation of some metals in Zea mays L. plants treated with indole-3-acetic acid. Cellular and Molecular Biology Letters 8 (1):97–104.
  • Saeidi, K., and Z. Lorigooini. 2017. Determination of mucilage content of mullein (Verbascum songaricum) populations. Journal of Pharmaceutical Sciences and Research 9 (12):2641–2643.
  • Saffaryazdi, A., M. Lahouti, A. Ganjeali, and H. Bayat. 2012. Impact of selenium supplementation on growth and selenium accumulation on spinach (Spinacia oleracea L.) plants. Notulae Scientia Biologicae 4 (4):95–100. doi:10.15835/nsb448029.
  • Sairam, R. K., K. V. Rao, and G. C. Srivastava. 2002. Differential response of wheat genotypes to long term salinity stress in relation to oxidative stress, antioxidant activity and osmolyte concentration. Plant Science 163 (5):1037–1046. doi:10.1016/S0168-9452(02)00278-9.
  • Salim, B. B. M., A. Abou El-Yazied, Y. A. M. Salama, A. Raza, and H. S. Osman. 2021. Impact of silicon foliar application in enhancing antioxidants, growth, flowering and yield of squash plants under deficit irrigation condition. Annals of Agricultural Sciences 66 (2):176–183. doi:10.1016/j.aoas.2021.12.003.
  • Sardans, J., and J. Peñuelas. 2021. Potassium control of plant functions: Ecological and agricultural implications. Plants 10 (2):419. doi:10.3390/plants10020419.
  • SAS Institute. 2002. SAS/STAT 9.1: User’s Guide.; Cary, NC, USA: SAS Institute Inc. 3703–3796.
  • Shekari, F., A. Abbasi, and S. H. Mustafavi. 2017. Effect of silicon and selenium on enzymatic changes and productivity of dill in saline condition. Journal of the Saudi Society of Agricultural Sciences 16 (4):367–374. doi:10.1016/j.jssas.2015.11.006.
  • Shi, Y., Y. Zhang, W. Han, R. Feng, Y. Hu, J. Guo, and H. Gong. 2016. Silicon enhances water stress tolerance by improving root hydraulic conductance in Solanum lycopersicum L. Frontiers in Plant Science 7:196. doi:10.3389/fpls.2016.00196.
  • Singleton, U. L., and J. Rossi. 1965. Colorimetry of total phenolics with phosphomolybdic-posphotungustic acid reagent. American Journal of Enology and Viticulture 16 (3):144–158. doi:10.5344/ajev.1965.16.3.144.
  • Smart, R. E., and G. E. Bingham. 1974. Rapid estimates of relative water content. Plant Physiology 53 (2):258–260. doi:10.1104/pp.53.2.258.
  • Taha, R. S., M. F. Seleiman, A. Shami, B. A. Alhammad, and A. H. Mahdi. 2021. Integrated application of selenium and silicon enhances growth and anatomical structure, antioxidant defense system and yield of wheat grown in salt-stressed soil. Plants 10 (6):1040. doi:10.3390/plants10061040.
  • Tang, H., Y. Liu, X. Gong, G. Zeng, B. Zheng, D. Wang, Z. Sun, L. Zhou, and X. Zeng. 2015. Effects of selenium and silicon on enhancing antioxidative capacity in ramie (Boehmeria nivea (L.) Gaud.) under cadmium stress. Environmental Science and Pollution Research International 22 (13):9999–10008. doi:10.1007/s11356-015-4187-2.
  • V. D., Meena, M. L., Dotaniya, Vassanda, Coumar, S., Rajendiran, S., Kundu, A., Subba Rao, Ajay,. 2014. A case for silicon fertilization to improve crop yields in tropical soils. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences, 384:505–518. doi:10.1007/s40011-013-0270-y.
  • Vandegeer, R. K., C. Zhao, X. Cibils‐Stewart, R. Wuhrer, C. R. Hall, S. E. Hartley, D. T. Tissue, and S. N. Johnson. 2021. Silicon deposition on guard cells increases stomatal sensitivity as mediated by K+ efflux and consequently reduces stomatal conductance. Physiologia Plantarum 171 (3):358–370. doi:10.1111/ppl.13202.
  • Vega, I., C. Rumpel, A. Ruíz, M. D. L. L. Mora, D. F. Calderini, and P. Cartes. 2020. Silicon modulates the production and composition of phenols in barley under aluminum stress. Agronomy 10 (8):1138. doi:10.3390/agronomy10081138.
  • Velikova, V., I. Yordanov, and A. Edreva. 2000. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: Protective role of exogenous polyamines. Plant Science 151 (1):59–66. doi:10.1016/S0168-9452(99)00197-1.
  • Walaa, A. E., M. A. Shatlah, M. H. Atteia, and H. A. M. Sror. 2010. Selenium induces antioxidant defensive enzymes and promotes tolerance against salinity stress in cucumber seedlings (Cucumis sativus). Arab Univ J Agric Sci 18 (1):65–76.
  • Wang, C., L. Yue, B. Cheng, F. Chen, X. Zhao, Z. Wang, and B. Xing. 2022. Mechanisms of growth-promotion and Se-enrichment in Brassica chinensis L. by selenium nanomaterials: Beneficial rhizosphere microorganisms, nutrient availability, and photosynthesis. Environmental Science: Nano 9 (1):302–312.
  • Xiao, Z., and Y. Liang. 2022. Silicon prevents aluminum from entering root tip by promoting formation of root border cells in rice. Plant Physiology and Biochemistry: PPB 175:12–22. doi:10.1016/j.plaphy.2022.02.003.
  • Xu, J., L. Guo, and L. Liu. 2022. Exogenous silicon alleviates drought stress in maize by improving growth, photosynthetic and antioxidant metabolism. Environmental and Experimental Botany 201:104974. doi:10.1016/j.envexpbot.2022.104974.
  • Xu, S., N. Zhao, D. Qin, S. Liu, S. Jiang, L. Xu, Z. Sun, D. Yan, and A. Hu. 2021. The synergistic effects of silicon and selenium on enhancing salt tolerance of maize plants. Environmental and Experimental Botany 187:104482. doi:10.1016/j.envexpbot.2021.104482.
  • Yamaguchi, K., H. Mori, and M. Nishimura. 1995. A novel isoenzyme of ascorbate peroxidase localized on glyoxysomal and leaf peroxisomal membranes in pumpkin. Plant & Cell Physiology 36 (6):1157–1162. doi:10.1093/oxfordjournals.pcp.a078862.
  • Zahedi, S. M., F. Moharrami, S. Sarikhani, and M. Padervand. 2020. Selenium and silica nanostructure-based recovery of strawberry plants subjected to drought stress. Scientific Reports 10 (1):17672. doi:10.1038/s41598-020-74273-9.
  • Zargar, S. M., R. Mahajan, J. A. Bhat, M. Nazir, and R. Deshmukh. 2019. Role of silicon in plant stress tolerance: Opportunities to achieve a sustainable cropping system. 3 Biotech 9 (3):73. doi:10.1007/s13205-019-1613-z.
  • Zhang, X., Y. Feng, T. Jing, X. Liu, X. Ai, and H. Bi. 2021. Melatonin promotes the chilling tolerance of cucumber seedlings by regulating antioxidant system and relieving photoinhibition. Frontiers in Plant Science 12:789617. doi:10.3389/fpls.2021.789617.
  • Zhang, Y., L. Jin, Q. Chen, Z. Wu, Y. Dong, L. Han, and T. Wang. 2015. Hypoglycemic activity evaluation and chemical study on hollyhock flowers. Fitoterapia 102:7–14. doi:10.1016/j.fitote.2015.02.00.
  • Zhang, J., Z. Zhang, W. Liu, L. Li, L. Han, L. Xu, and Y. Zhao. 2022. Transcriptome analysis revealed a positive role of Ethephon on chlorophyll metabolism of Zoysia japonica under cold stress. Plants 11 (3):442. doi:10.3390/plants11030442.
  • Zhu, Y., X. Jiang, J. Zhang, Y. He, X. Zhu, X. Zhou, H. Gong, J. Yin, and Y. Liu. 2020. Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiology and Biochemistry: PPB 156:209–220. doi:10.1016/j.plaphy.2020.09.014.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.