32
Views
11
CrossRef citations to date
0
Altmetric
Research Article

Ultrastructural Immunostaining of Infiltrating Ductal Breast Carcinomas with the Monoclonal Antibody H: A Comparative Study with Cytokeratin 8

, , , , , , , & show all
Pages 393-407 | Published online: 10 Jul 2009

References

  • Henderson BE, Pike MC, Bernstein L, Ross RK. Breast cancer. In: Schottenfeld D, Fraumeni JF, eds. Cancer Epidemiology and Prevention, ed 2. Oxford, UK: Oxford University Press; 1996; 1022–1039.
  • Rosen PP. The pathological classification of human mammary carcinoma: past, present and future. Ann Clin Lab Sci. 1979;9:144–156.
  • Tulinius H, Bjarnason O, Sigvaldason H, Bjarnadottir G, Olafsdottir G. Tumours in Iceland, 10; malignant tumours of the female breast - a histological classification, laterality, survival and epidemiological considerations. APMIS. 1988;96:229–238.
  • Rosen PP. Invasive duct carcinoma and morphological prognostic markers. In: Rosen PP, ed. Breast Pathology. Philadelphia: Lippincott-Raven; 1997;275-293.
  • Ahmed A. Atlas of the Ultrastructure of Human Breast Diseases. London: Churchill-Livingstone; 1978.
  • Gallager SH. Pathologic types of breast cancer: their prognoses. Cancer. 1984;53:623–629.
  • Goldenberg VE, Goldenberg NS, Sommers SC. Comparative ultrastructure of atypical ductal hyperplasia, intraductal carcinoma and infiltrating ductal carcinoma of the breast. Cancer. 1969;24:1152–1169.
  • Pucci-Minafra I, Minafra S, Faccini AM, Alessandro R. An ultrastructural evaluation of cell heterogeneity in invasive ductal carcinomas of the human breast, I: an in vivo study. J Submicrosc Cytol Pathol. 1989;21:475–488.
  • Querzoli P, Albonico G, Ferretti S, Rinaldi R, Magri E, Nenci I. Quantitative immunoprofiles of breast cancer performed by image analysis. Anal Quant Cytol Histol. 1999;21:151–160.
  • Altenstrasser F, Weger AR, Lindholm J, Gschwendter A, Mairinger T. Reproducibility and efficiency testing of two sampling methods for image analysis in cytology. Anal Quant Cytol Histol. 1998;20:92–96.
  • Ghadially FN. Diagnostic Electron Microscopy of Tumors, ed 2. London: Butterworths; 1985.
  • Djabali K. Cytoskeletal proteins connecting intermediate filaments to cytoplasmic and nuclear periphery. Histol Histopathol. 1999;14:501–509.
  • Dickersin GR. Diagnostic Electron Microscopy: A Text=Atlas, ed 2. New York: Springer; 2000.
  • Franke WW, Schiller DL, Moll R, et al. Diversity of cytokeratins: differentiation specific expression of cytokeratin polypeptides in epithelial cells and tissues. J Mol Biol. 1981;153:933–959.
  • Moll R, Franke WW, Schiller DL, Geiger B, Krepler R. The catalog of human cytokeratin polypeptides: patterns of expression of specific cytokeratins in normal epithelia, tumors and cultured cells. Cell. 1982;31:11–24.
  • Franke WW, Schiller DL, Hatzfeld M, Winter S. Protein complexes of intermediated-sized filaments: melting of cytokeratin complexes in urea reveals different polypeptide separation characteristics. Proc Natl Acad Sci USA. 1983;80:7113–7117.
  • Moll R, Schiller DL, Franke WW. Identification of protein IT of intestinal cytoskeleton as a novel type I cytokeratin with unusual properties and expression patterns. J Cell Biol. 1990;111:567–580.
  • Chu PG, Weiss LM. Keratin expression in human tissues and neoplasms. Histopathology. 2002;40:403–439.
  • Fuchs E, Coppock SM, Green H, Cleveland DW. Two distinct classes of keratin genes and their evolutionary significance. Cell. 1981;27:75–84.
  • Kim KH, Rheinwald JG, Fuchs E. Tissue specificity of epithelial keratins: differential expressions of mRNAs from two multigene families. Mol Cell Biol. 1983;3:495–502.
  • Kim KH, Marchuk D, Fuchs E. Expression of unusually large keratins during terminal differentiation: balance of type II keratins is not disrupted. J Cell Biol. 1984;99:1872–1877.
  • Fuchs E. Keratins as biochemical markers of epithelial differentiation. Trends Genet. 1988;4:277–281.
  • Franke WW, Schmid E, Weber K, Osborn M. HeLa cells contain intermediate-sized filaments of the prekeratin type. Exp Cell Res. 1979;118:95–109.
  • Van Muijen GNP, Ruiter DJ, Franke WW, et al. Cell type heterogeneity of cytokeratin expression in complex epithelia and carcinomas as demonstrated by monoclonal antibodies specific for cytokeratins 4 and 13. Exp Cell Res. 1986;162:97–113.
  • Osborn M, Weber K. Tumour diagnosis by intermediate filament typing: a novel tool for surgical pathology. Lab Invest. 1983;48:372–394.
  • Cooper DS, Schermer A, Sun TT. Classification of human epithelia and their neoplasms using monoclonal antibodies to keratins: strategies, applications and limitations. Lab Invest. 1985;52:243–256.
  • Gown AM, Vogel AM. Monoclonal antibodies to human intermediate filament proteins. Am J Clin Pathol. 1985;84:413–424.
  • Bartek J, Vojtesek B, Staskova Z, Bartkova J, Kerekes Z, Rejthar A series if 14 new monoclonal antibodies to keratins: characterization and value in diagnostic histopathology. J Pathol. 1991;164:215–224.
  • Miettinen M. Keratin immunohistochemistry: update on applications and pitfalls. Pathol Annu. 1993;8:113–143.
  • Jarasch ED, Nagle RB, Kaufmann M, Maurer C, Bocker WJ. Differential diagnosis of benign epithelial proliferations and carcinomas of the breast using antibodies to cytokeratins. Hum Pathol. 1988;19:276–289.
  • Trask DK, Band V, Zajchowski DA, Yaswen P, Suh T, Sager R. Keratins as markers that distinguish normal and tumor-derived mammary epithelial cells. Proc Natl Acad Sci USA. 1990;87:2319–2323.
  • Heatley M, Maxwell P, Whiteside C, Toner P. Cytokeratin intermediate filament expression in benign and malignant breast disease. J Clin Pathol. 1995;48:26–32.
  • Moll R, Krepler R, Franke WW. Complex cytokeratin polypeptide patterns observed in certain human carcinomas. Differentiation. 1983;23:256–269.
  • Quinlan RA, Schiller DL, Hatzfeld M, et al. Patterns of expression and organization of cytokeratin intermediate filaments. In: Wang E, Fishman D, Liem RRH, Sun T-T, eds. Intermediate Filaments. Ann NY Acad Sci. New York: NYAS 1985;455:282–306.
  • Takei H, Lino Y, Horiguchi J, et al. Immunohistochemical analysis of cytokeratin 8 as a prognostic factor in invasive breast carcinoma. Anticancer Res. 1995;15:1101–1106.
  • Godfroid E, Geuskens M, Dupressoir T, Parent I, Szpirer C. Cytokeratins are exposed on the outer surface of established human mammary carcinoma cells. J Cell Sci. 1991;99:595–607.
  • Hembrough TA, Vasudevan J, Allietta MM, Glass II WF, Gonias SL. A cytokeratin 8-like protein with plasminogen-binding activity is present on the external surfaces of hepatocytes, HepG2 cells and breast carcinoma cell lines. J Cell Sci. 1995;108:1071–1082.
  • Chan R, Rossitto PV, Edwards BF, Cardiff RD. Presence of proteolytically processed keratins in the culture medium of MCF-7 cells. Cancer Res. 1986;46:6353–6359.
  • Hembrough TA, Gonias SL. Cell-surface cytokeratin 8 is the major plasminogen receptor on breast cancer cells and is required for the accelerated activation of cell-associated plasminogen by tissue-type plasminogen activator. J Biol Chem. 1996;271:25684–25691.
  • Weber K, Osborn M, Moll R, Wiklund B, Luning B. Tissue polypeptide antigen (TPA) is related to the nonepidermal keratins 8, 18 and 19 typical of simple and nonsquamous epithelia: re-evaluation of a human tumor marker. EMBO J. 1984;3:2707–2714.
  • Arvanitis DL, Kouklis P, Mori de Moro G, Goutas N, Kittas C, Szuchet S. Immunostaining of ductal breast carcinoma with the monoclonal antibody H. Oncol Rep. 1995;2:991–995.
  • Arvanitis DL, Stavridou AI, Mori de Moro G, Szuchet S. Reactive astrocytes upregulate one or more gene products that are recognized by monoclonal antibody H. Cell Tissue Res. 2001;304:11–19.
  • Chou C-F, Smith AJ, Omary MB. Characterization and dynamics of O-linked glycosylation of human cytokeratins 8 and 18. J Biol Chem. 1992;267:3901–3906.
  • Haltiwanger RS, Kelly WG, Roquemore EP, et al. Glycosylation of nuclear and cytoplasmic proteins is ubiquitous and dynamic. Biochem Soc Trans. 1992;20:264–269.
  • Haltiwanger RS, Busby S, Grove K, et al. O-glycosylation of nuclear and cytoplasmic proteins: analogous to phosphorylation? Biochem Biophys Res Commun. 1997;231:237–242.
  • Hart GW. Dynamic O-linked glycosylation of nuclear and cytoskeletal proteins. Annu Rev Biochem. 1997;66:315–335.
  • Kreppel LK, Blomberg MA, Hart GW. Dynamic glycosylation of nuclear and cytosolic proteins. J Biol Chem. 1997;272:9308–9315.
  • Erlandson RA. Diagnostic Transmission Electron Microscopy of Tumors. New York: Raven Press, 1994.
  • Dvorak AM, Monahan-Earley RA. Diagnostic Ultrastructural Pathology, I. Boca Raton, CRC Press; 2000.
  • Tucker JA. The continuing value of electron microscopy in surgical pathology. Ultrastruct Pathol. 2000;24:383–389.
  • Ordó ñ ez NG, Mackay B Electron microscopy in tumor diagnosis: indications for its use in the immunohistochemical era. Hum Pathol. 1998;29:1403–1411
  • Verkleij AJ, Koster AJ, Mu« ller WH, Humberl BM. Immunogold labeling in transmission electron microscopy. In: Thiery JP, ed. Molecular Mechanisms of Transcellular Signaling. Amsterdam: IOS Press; 1999:339–355.
  • Faulk WP, Taylor GM. An immunocolloid method for the electron microscope. Immunocytochemistry. 1971;8:1081–1083.
  • Beier K, Fahimi HD. Automatic determination of labeling density in protein A-gold immunocytochemical preparations using an image analyzer: application to peroxisomal enzymes. Histochemistry. 1985;82:99–100.
  • Pulczynski S, Jensen OM. Quantitation of immunogold with an interactive image analysis system: a new, practical approach to antibody-induced modulation, internalization and intracellular transport of surface antigens in viable hematopoietic cells. Anal Quant Cytol Histol. 1994;16:393–399.
  • Gracia-Navarro F, Ruiz-Navarro A, Garc S, J. Transmission electron microscopy. Wootton R, Springall DR, Polak JM, eds. Image Analysis in Histology: Conventional and Confocal Microscopy. Cambridge, UK: Cambridge University Press; 1995:197–210.
  • Hisano S, Adachi T, Maegawa M, Daikoku S. Some improvement in tissue preparation and colloidal-gold immunolabeling for electron microscopy. Am J Anat. 1986;175:245–266.
  • Slot JW, Posthuma G, Ghang LY, Crapo JD, Geuze HJ. Quantitative aspects of immunogold labeling in embedded and in nonembedded sections. Am J Anat. 1989;185:271–281.
  • Fahimi HD, Reich D, Volkl A, Baumgart E. Contributions of the immunogold technique to investigation of the biology of peroxisomes. Histochem Cell Biol. 1996;106:105–114.
  • Bloom HJG, Richardson HH. Histological grading and prognosis in breast cancer: a study of 1409 cases of which 359 have been followed for fifteen years. Br J Cancer. 1957;11:359–377.
  • Causton B. The choice of resins for electron immunocytochemistry. In: Polak JM, Varndell IM, eds. Immunolabelling for Electron Microscopy. Amsterdam: Elsevier; 1984:29–36.
  • Bendayan M, Zollinger M. Ultrastructural localization of antigenic sites on osmium-fixed tissues applying the protein A-gold technique. J Histochem Cytochem. 1983;31:101–109.
  • Polak JM, Van Noorden S. Post-embedding immunocytochemistry for the transmission electron In: Polak JM, Van Noorden S, eds. Introduction to Immunocytochemistry. Oxford, UK: Bios Scientific; 1997:81–89.
  • Laird NM, Ware JH. Random-effects models for longitudinal data. Biometrics. 1982;38:963–974.
  • Holt GD, Hart GW. The subcellular distribution of terminal N-acetylglucosamine moieties: localization of a novel protein-saccharide linkage, O-linked GlcNAc. J Biol Chem. 1986;261:8049–8057.
  • Chandra NC, Spiro MJ, Spiro RG. Identification of a glycoprotein from rat liver mitochondrial inner membrane and demonstration of its origin in the endoplasmic reticulum. J Biol Chem. 1998;273:19715–19721.
  • Go« rlach M, Meyer HE, Elsermann B, Soboll S. cAMP-dependent phosphorylation of cytokeratin in hepatic inner mitochondrial membrane. Biol Chem Hoppe-Seyler. 1995;376:51–55.
  • Abeijon C, Hirschberg CB. Intrinsic membrane glycoproteins with cytosol-oriented sugars in the endoplasmic reticulum. Proc Natl Acad Sci USA. 1988;85:1010–1014.
  • Kelly WG, Hart GW. Glycosylation of chromosomal proteins: localization of O-linked N-acetylglucosamine in Drosophila chromatin. Cell. 1989;57:243–251.
  • Jackson SP, Tjian R. Purification and analysis of RNA polymerase II transcription factors by using wheat germ agglutinin affinity chromatography. Proc Natl Acad Sci USA. 1989;86:1781–1785.
  • Reason AJ, Morris HR, Panico M, et al. Localization of O-GlcNAc modification on the serum response transcription factor. J Biol Chem. 1992;267:16911–16921.
  • Privalsky ML. A subpopulation of the avian erythroblastosis virus v-erbA protein, a member of the nuclear hormone receptor family, is glycosylated. J Virol. 1990;64:463–466.
  • Chou T-Y, Hart GW, Dang CV. c-Myc is glycosylated at threonine 58, a known phosphorylation site and a mutational hot spot in lymphomas. J Biol Chem. 1995;270:18961–18965.
  • Shaw P, Freeman J, Bovey R, Iggo R. Regulation of specific DNA binding by p53: evidence for a role for O-glycosylation and charged residues at the carboxy-terminus. Oncogene. 1996;12:921–930.
  • Jiang MS, Hart GW. A subpopulation of estrogen receptors are modified by O-linked N-acetylglucosamine. J Biol Chem. 1997;272:2421–2428.
  • Cheng X, Hart GW. Glycosylation of the murine estrogen receptor-alpha. J Steroid Biochem Mol Biol. 2000;75:147–158.
  • Ward WS, Schmidt WN, Schmidt CA, Hnilica LS. Association of cytokeratin p39 with DNA in intact Novikoff hepatoma cells. Proc Natl Acad Sci USA. 1984;81:419–423.
  • Tolstonog GV, Sabasch M, Traub P. Cytoplasmic intermediate filaments are stably associated with nuclear matrices and potentially modulate their DNA-binding function. DNA Cell Biol. 2002;21:213–239.
  • Spencer VA, Coutts AS, Samuel SK, Murphy LC, Davie JR. Estrogen regulates the association of intermediate filament proteins with nuclear DNA in human breast cancer cells. J Biol Chem. 1998;273:29093–29097.
  • Dolo V, Adobati E, Canevari S, Picone MA, Vittorelli ML. Membrane vesicles shed into the extracellular medium by human breast carcinoma cells carry tumor-associated surface antigens. Clin Exp Metastasis. 1995;13:277–286.
  • Leube RE, Bosch FX, Romano V, Zimbelmann R, Hofler H, Franke WW. Cytokeratin expression in simple epithelia, III: detection of mRNAs encoding human cytokeratins nos. 8 and 18 in normal and tumor cells by hybridization with cDNA sequences in vitro and in situ. Differentiation. 1986;33:69–85.
  • Sundstrom BE, Stigbrand TI. Cytokeratins and tissue polypeptide antigen. Int J Biol Markers. 1994;9:102–108.
  • Gonias SL, Hembrough TA, Sankovic M. Cytokeratin 8 functions as a major plasminogen receptor in select epithelial and carcinoma cells. Front Biosci. 2001;6:1403–1411.
  • Riopel CL, Butt I, Omary MB. Method of cell handling affects leakiness of cell surface labeling and detection of intracellular keratins. Cell Motil Cytoskel. 1993;26:77–87.
  • Asch HL, Mayhew E, Lazo RO, Asch BB. Lipids covalently bound to keratins of mouse mammary epithelial cells. Biochem Mol Biol Int. 1993;29:1161–1169.
  • Slawson C, Pidala J, Potter R. Increased N-acetyl-b-glucosaminidase activity in primary breast carcinomas corresponds to a decrease in N-acetylglucosamine containing proteins. Biochim Biophys Acta. 2001;1537:147–157.
  • Zachara NE, Hart GW. The emerging significance of O-GlcNAc in cellular regulation. Chem Rev. 2002;102:431–438.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.