229
Views
1
CrossRef citations to date
0
Altmetric
Orginal Article

Application of laboratory and digital techniques for visual enhancement during the ultrastructural assessment of cilia

Pages 399-407 | Received 28 Jul 2017, Accepted 31 Jul 2017, Published online: 11 Sep 2017

References

  • Chilvers MA, Rutman A, O’Callaghan C. Ciliary beat pattern is associated with specific ultrastructural defects in primary ciliary dyskinesia. J Allergy Clin Immunol. 2003;112(3):518–524.
  • Lucas JS, Burgess A, Mitchison HM, et al. Diagnosis and management of primary ciliary dyskinesia. Arch Dis Child. 2014;99(9):850–856. doi:10.1136/archdischild-2013-304831.
  • Olm MA, Caldini EG, Mauad T. Diagnosis of primary ciliary dyskinesia. Jornal Brasileiro De Pneumologia: Publicacao Oficial Da Sociedade Brasileira De Pneumologia E Tisilogia. 2015;41(3):251–263.
  • Kurkowiak M, Zietkiewicz E, Witt M. Recent advances in primary ciliary dyskinesia genetics. J Med Genet. 2015;52(1):1–9.
  • Werner C, Onnebrink JG, Omran H. Diagnosis and management of primary ciliary dyskinesia. Cilia. 2015;4(1):2.
  • Afzelius BA. A human syndrome caused by immotile cilia. Science. 1976;193(4250):317–319.
  • Pedersen H, Mygind N. Absence of axonemal arms in nasal mucosa cilia in Kartagener’s syndrome. Nature. 1976;262(5568):494–495.
  • De Iongh RU, Rutland J. Ciliary defects in healthy subjects, bronchiectasis, and primary ciliary dyskinesia. Am J Respir Crit Care Med. 1995;151(5):1559–1567.
  • Carlén B, Stenram U. Primary ciliary dyskinesia: A review. Ultrastruct Pathol. 2005;29(3–4):217–220.
  • Bush A, Chodhari R, Collins N, et al. Primary ciliary dyskinesia: Current state of the art. Arch Dis Child. 2007;92(12):1136–1140. doi:10.1136/adc.2006.096958.
  • Lucas JS, Leigh MW. Diagnosis of primary ciliary dyskinesia: Searching for a gold standard. Eur Respir J. 2014;44(6):1418–1422.
  • Herzon FS, Murphy S. Normal ciliary ultrastructure in children with Kartagener’s syndrome. Ann Otology, Rhinol Laryngol. 1980;89(1):81–83.
  • Greenstone M, Rutman A, Pavia D, Lawrence D, Cole PJ. Normal axonemal structure and function in Kartagener’s syndrome: an explicable paradox. Thorax. 1985;40(12):956–957.
  • Escudier E, Escalier D, Homasson JP, Pinchon MC, Bernaudin JF. Unexpectedly normal cilia and spermatozoa in an infertile man with Kartagener’s syndrome. Eur J Respir Dis. 1987;70(3):180–186.
  • Pifferi M, Michelucci A, Conidi ME, et al. New DNAH11 mutations in primary ciliary dyskinesia with normal axonemal ultrastructure. Eur Respir J. 2010;35(6):1413–1416. doi:10.1183/09031936.00186209.
  • Knowles MR, Leigh MW, Carson JL, et al. Mutations of DNAH11 in patients with primary ciliary dyskinesia with normal ciliary ultrastructure. Thorax. 2012;67(5):433–441. doi:10.1136/thoraxjnl-2011-200301.
  • Lobo LJ, Zariwala MA, Noone PG. Primary ciliary dyskinesia. QJM: Monthly J Assoc Phys. 2014;107(9):691–699.
  • Boon M, Smits A, Cuppens H, et al. Primary ciliary dyskinesia: Critical evaluation of clinical symptoms and diagnosis in patients with normal and abnormal ultrastructure. Orphanet J Rare Dis. 2014;9:11.
  • Olbrich H, Schmidts M, Werner C, et al. Recessive HYDIN mutations cause primary ciliary dyskinesia without randomization of left-right body asymmetry. Am J Hum Genet. 2012;91(4):672–684. doi:10.1016/j.ajhg.2012.08.016.
  • Horani A, Brody SL, Ferkol TW. Picking up speed: Advances in the genetics of primary ciliary dyskinesia. Pediatr Res. 2014;75(1–2):158–164.
  • Lucas JS, Barbato A, Collins SA, et al. European Respiratory Society guidelines for the diagnosis of primary ciliary dyskinesia. Eur Respir J. 2017;49(1). doi:10.1183/13993003.01090-2016.
  • Shoemark A, Frost E, Dixon M, et al. Accuracy of immunofluorescence in the diagnosis of primary ciliary Dyskinesia. Am J Respir Crit Care Med. 2017;196:94–101.
  • Pazour GJ, Agrin N, Leszyk J, Witman GB. Proteomic analysis of a eukaryotic cilium. J Cell Biol. 2005;170(1):103–113.
  • Bui KH, Sakakibara H, Movassagh T, Oiwa K, Ishikawa T. Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagella. J Cell Biol. 2008;183(5):923–932.
  • Heuser T, Raytchev M, Krell J, Porter ME, Nicastro D. The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol. 2009;187(6):921–933.
  • O’Toole ET, Giddings TH Jr., Porter ME, Ostrowski LE. Computer-assisted image analysis of human cilia and Chlamydomonas flagella reveals both similarities and differences in axoneme structure. Cytoskeleton. 2012;69(8):577–590.
  • Plesec TP, Ruiz A, McMahon JT, Prayson RA. Ultrastructural abnormalities of respiratory cilia: A 25-year experience. Arch Pathol Lab Med. 2008;132(11):1786–1791.
  • Papon JF, Coste A, Roudot-Thoraval F, et al. A 20-year experience of electron microscopy in the diagnosis of primary ciliary dyskinesia. Eur Respir J. 2010;35(5):1057–1063. doi:10.1183/09031936.00046209.
  • Theegarten D, Ebsen M. Ultrastructural pathology of primary ciliary dyskinesia: Report about 125 cases in Germany. Diagn Pathol. 2011;6:115.
  • Shoemark A, Dixon M, Corrin B, Dewar A. Twenty-year review of quantitative transmission electron microscopy for the diagnosis of primary ciliary dyskinesia. J Clin Pathol. 2012;65(3):267–271.
  • Yiallouros P. The contemporary use of EM in the diagnosis of ciliary disorders and sperm abnormalities. In: Stirling JW, Curry A, Eyden BP, eds. Diagnostic Electron Microscopy: A Practical Guide to Tissue Preparation and Interpretation. Chichester, West Sussex: John Wiley & Sons; 2013. pp. 221–236.
  • Chao J, Turner JA, Sturgess JM. Genetic heterogeneity of dynein-deficiency in cilia from patients with respiratory disease. Am Rev Respir Dis. 1982;126(2):302–305.
  • Rutland J, Cox T, Dewar A, Cole P. Screening for ciliary dyskinesia: A spectrum of defects of motility and structure. Eur J Respir Dis Suppl. 1983;127:71–77.
  • Carson JL, Hu SS, Collier AM. Computer-assisted analysis of radial symmetry in human airway epithelial cilia: Assessment of congenital ciliary defects in primary ciliary dyskinesia. Ultrastruct Pathol. 2000;24(3):169–174.
  • Escudier E, Couprie M, Duriez B, et al. Computer-assisted analysis helps detect inner dynein arm abnormalities. Am J Respir Crit Care Med. 2002;166(9):1257–1262. doi:10.1164/rccm.2111070.
  • Schroeder JA, Semmelmann M, Siegmund H, Grafe C, Evert M, Palm C. Improved interactive computer-assisted approach for evaluation of ultrastructural cilia abnormalities. Ultrastruct Pathol. 2017;41(1):112–113.
  • Ishikawa T. Cryo-electron tomography of motile cilia and flagella. Cilia. 2015;4(1):3.
  • Harris JR. Electron Microscopy in Biology: A Practical Approach. Oxford, New York: IRL Press; 1991.
  • Bozzola JJ, Russell LD. Electron Microscopy: Principles and Techniques for Biologists. 2nd ed. Sudbury, Mass: Jones and Bartlett; 1999.
  • Hayat MA. Principles and Techniques of Electron Microscopy: Biological Applications. 4th ed. Cambridge, UK, New York: Cambridge University Press; 2000.
  • Pelchen-Matthews A, Marsh M. Electron microscopy analysis of viral morphogenesis. Method Cell Biol. 2007;79:515–542.
  • Porter ME, Power J, Dutcher SK. Extragenic suppressors of paralyzed flagellar mutations in Chlamydomonas reinhardtii identify loci that alter the inner dynein arms. J Cell Biol. 1992;118(5):1163–1176.
  • Robinson DG. Methods of Preparation for Electron Microscopy: An Introduction for the Biomedical Sciences. Berlin, New York: Springer-Verlag; 1987.
  • Afzelius BA, Bellon PL, Lanzavecchia S. Microtubules and their protofilaments in the flagellum of an insect spermatozoon. J Cell Sci. 1990;95(Pt 2):207–217.
  • Dallai R, Afzelius BA. Ultrastructural patterns of the flagellar axoneme in the non-motile part of the mole-cricket sperm. Biol Cell. 1990;70(1–2):19–26.
  • Simionescu N, Simionescu M. Galloylglucoses of low molecular weight as mordant in electron microscopy. I. Procedure, and evidence for mordanting effect. J Cell Biol. 1976;70(3):608–621.
  • Wallmeier J, Shiratori H, Dougherty GW, et al. TTC25 deficiency results in defects of the outer dynein arm docking machinery and primary ciliary dyskinesia with left-right body asymmetry randomization. Am J Hum Genet. 2016;99(2):460–469. doi:10.1016/j.ajhg.2016.06.014.
  • Sato S, Sasaki Y, Adachi A, Dai W, Liu X-L, Namimatsu S. Use of oolong tea extract (OTE) for elastin staining and enhancement in ultrathin sections. Med Electron Microsc: Off J Clin Electron Microsc Soc Jpn. 2003;36(3):179–182.
  • Miller AA, Simakova AV. Use of the OTE-staining method for ultrathin sections on the example of microsporidia (Protozoa: microsporidia). Tsitologiia. 2009;51(9):741–747.
  • Carpentier A, Abreu S, Trichet M, Satiat-Jeunemaitre B. Microwaves and tea: New tools to process plant tissue for transmission electron microscopy. J Microsc. 2012;247(1):94–105.
  • He X, Liu B. Oolong tea extract as a substitute for uranyl acetate in staining of ultrathin sections based on examples of animal tissues for transmission electron microscopy. J Microsc. 2017. doi:10.1111/jmi.12544
  • Russ JC, Russ JC. Introduction to Image Processing and Analysis. Boca Raton, FL: CRC Press; 2008.
  • Edwards GP. Digital imaging for diagnostic transmission electron microscopy. In: Stirling JW, Curry A, Eyden BP, eds. Diagnostic Electron Microscopy: A Practical Guide to Tissue Preparation and Interpretation. Chichester, West Sussex: John Wiley & Sons; 2013. p. 419–429.
  • Hoenger A, & Nicastro D. Electron microscopy of microtubule-based cytoskeletal machinery. In ed. McIntosh JR. cellular Electron Microscopy. Amsterdam Boston: Elsevier/Academic Press. Amsterdam Boston: Elsevier/Academic Press; 2007, p. 437-462.
  • Markham R, Frey S, Hills GJ. Methods for the enhancement of image detail and accentuation of structure in electron microscopy. Virology. 1963;20(1):88–102.
  • Kamiya R, Kurimoto E, Muto E. Two types of Chlamydomonas flagellar mutants missing different components of inner-arm dynein. J Cell Biol. 1991;112(3):441–447.
  • Bradski GR, Kaehler A. Learning OpenCV computer vision with the OpenCV library. 1st ed. Sebastopol, California: O’Reilly Media; 2008. http://proquest.safaribooksonline.com/9780596516130.
  • Hoog JL, Bouchet-Marquis C, McIntosh JR, Hoenger A, Gull K. Cryo-electron tomography and 3-D analysis of the intact flagellum in Trypanosoma brucei. J Struct Biol. 2012;178(2):189–198.
  • Bui KH, Ishikawa T. 3D structural analysis of flagella/cilia by cryo-electron tomography. Methods Enzymol. 2013;524:305–323.
  • Doroquez DB, Berciu C, Anderson JR, Sengupta P, Nicastro D. A high-resolution morphological and ultrastructural map of anterior sensory cilia and glia in Caenorhabditis elegans. eLife. 2014;3:e01948.
  • Lin J, Yin W, Smith MC, et al. Cryo-electron tomography reveals ciliary defects underlying human RSPH1 primary ciliary dyskinesia. Nat Commun. 2014;5:5727.
  • Grys BT, Lo DS, Sahin N, et al. Machine learning and computer vision approaches for phenotypic profiling. J Cell Biol. 2017;216(1):65–71. doi:10.1083/jcb.201610026.
  • Quinn SP, Zahid MJ, Durkin JR, Francis RJ, Lo CW, Chennubhotla SC. Automated identification of abnormal respiratory ciliary motion in nasal biopsies. Sci Transl Med. 2015;7(299):299ra124.
  • Satir P. CILIA: Before and after. Cilia. 2017;6:1.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.