470
Views
4
CrossRef citations to date
0
Altmetric
Review

Renal amyloidosis with emphasis on the diagnostic role of electron microscopy

Pages 325-341 | Received 27 Oct 2020, Accepted 27 Oct 2020, Published online: 09 Nov 2020

References

  • Lin CY, Gurlo T, Kayed R, et al. Toxic human islet amyloid polypeptide (h-IAPP) oligomers are intracellular, and vaccination to induce anti-toxic oligomer antibodies does not prevent h-IAPP-induced beta-cell apoptosis in h-IAPP transgenic mice. Diabetes. 2007;56(5):1324–1332. doi:10.2337/db06-1579.
  • Nilsson MR. Techniques to study amyloid fibril formation in vitro. Methods. 2004;34(1):151–160. doi:10.1016/j.ymeth.2004.03.012.
  • Fändrich M. On the structural definition of amyloid fibrils and other polypeptide aggregates. Cell Mol Life Sci. 2004;64(16):2066–2078. doi:10.1007/s00018-007-7110-2.
  • Sipe JD, Cohen AS. Review: history of the amyloid fibril. J Struct Biol. 2000;130(2–3):88–98. doi:10.1006/jsbi.2000.4221.
  • Ogg CS, Cameron JS, Williams DG, et al. Presentation and course of primary amyloidosis in the kidney. Clin Nephrol. 1981;15:9–13.
  • Lachman HJ, Goodman HJ, Gilbertson JA, et al. Natural history and outcome in systemic AA amyloidosis. N Engl J Med. 2007;356:2361–2371. doi:10.1056/NEJMoa070265.
  • Watanabe T, Saniter T. Morphological and clinical features of renal amyloidosis. Virchow Arch. 1975;366:125–135. doi:10.1007/BF00433586.
  • Moutzouris DA, Herlitz L, Appel GB, et al. Renal biopsy in the very elderly. Clin J Am Soc Nephrol. 2009;4:1073–1082. doi:10.2215/CJN.00990209.
  • Falck HM, Tornroth T, Wegelius O. Predominantly vascular amyloid deposition in the kidney with minimal or no proteinuria. Clin Nephrol. 1983;19:137–142.
  • Rivera E, Gil CM, Gil MT, et al. Vascular renal AA amyloidosis in adult still’s disease. Nephrol Dial Transplant. 1997;12:1714–1716. doi:10.1093/ndt/12.8.1714.
  • Herrera GA, Picken MM. Renal diseases associated with plasma cell dyscrasias, amyloidoses, and waldenstrom macroglobulinemia. In: Jennette JC, Olson JL, Silva FG, D’Agati VD, eds. Heptinstall's Pathology of the Kidney. 7th ed. Philadelphia, Baltimore, New York, London, Hong Kong, Sydney, Tokyo: Wolters Kluwer; 2014:1015–1037, Chapter 22.
  • Sethi S, Theis JD, Shiller SM, et al. Medullary amyloidosis associated with apolipoprotein A-IV deposition. Kidney Int. 2012;81:201–206. doi:10.1038/ki.2011.316.
  • Lobato L, Rocha A. Transthyretin amyloidosis and the kidney. CJASN. 2012;7(8):1337–1346. doi:10.2215/CJN.08720811.
  • Clement CG, Truong LD. An evaluation of Congo red fluorescence for the diagnosis of amyloidosis. Hum Pathol. 2014;45(8):1766–1772. doi:10.1016/j.humpath.2014.04.016.
  • Picken MM, Herrera GA. Thioflavin T stain: an easier and more sensitive method for amyloid detection. In: Picken MM, Dogan A, Herrera GA, eds. Amyloid and Related Disorders. Surgical Pathology and Clinical Correlations. Totowa, New Jersey: Humana Press; 2012:187–89, Chapter 22.
  • Iskandar SS, Herrera GA. Glomerulopathies with organized deposits. Sem Diagn Pathol. 2002;19:116–132.
  • Howell D, Gu X, Herrera GA. Organized deposits and look-alikes. Ultrastruct Pathol. 2003;27:295–312. doi:10.1080/01913120390231555.
  • Herrera GA, Turbat-Herrera EA. Renal diseases with organized deposits: an algorithmic approach to classification and diagnosis. Arch Pathol Lab Med. 2010;134:512–531.
  • Larsen CP, Walker PD, Weiss DT, et al. Prevalence and morphology of leukocyte chemotactic factor 2-associated amyloid in renal biopsies. Kidney Int. 2010;77(9):816–819. doi:10.1038/ki.2010.9.
  • Comenzo RL, Zhang Y, Martinez C, et al. The tropism of organ involvement in primary systemic amyloidosis. Contributions of the Ig VL germline gene use and clonal plasma cell burden. Blood. 2001;98:714–720. doi:10.1182/blood.V98.3.714.
  • Dogan A. Classification of amyloidosis by mass spectrometry-based proteomics. In: Picken MM, Dogan A, Herrera GA, eds. Amyloid and Related Disorders in Surgical Pathology and Clinical Correlations. New York, Dordrecht, Heidelberg, London: Springer; 2012:261–272.
  • Sethi S, Theis JD, Vrana JA, et al. Laser microdissection and proteomic analysis of amyloidosis, cryoglobulinemic glomerulopathy, fibrillary GN and immunotactoid glomerulopathy. Clin J Am Soc Nephrol. 2013;18:915–921. doi:10.2215/CJN.07030712.
  • Sethi S, Vrana J, Theis JD, Dogan A. Mass spectrometry based proteomics in the diagnosis of kidney disease. Curr Opin Nephrol Hypertens. 2013;22:273–280.
  • Picken MM, Herrera GA. The burden of “sticky” amyloid: typing challenges. Arch Pathol Lab Med. 2007;131:850–851.
  • Dogan A, Theis JD, Vrana JA. Mass spectrometry based proteinomics for classification of amyloidosis: Mayo Clinic experience. In: Hazenberg PD, Bitzet J, Gameren II, et al., eds. XIIth International Symposium on Amyloidosis; Groningen: UMCG;2013:183–185.
  • Cohen AS, Calkins E. Electron microscopic observation on a fibrous component in amyloid of diverse origins. Nature. 1959;183:1202–1203. doi:10.1038/1831202a0.
  • Shirahama T, Cohen AS. High resolution electron microscopic analysis of the amyloid fibril. J Cell Biol. 1967;33:679–727. doi:10.1083/jcb.33.3.679.
  • Shirahama T, Cohen AS. Fine structure of the glomerulus in human and experimental amyloidosis. Am J Pathol. 1973;73:97–114.
  • Gueft G, Ghidoni JJ. The site of formation and ultrastructure of amyloid. Am J Pathol. 1963;43:837–854.
  • von Gise H, Christ H, Bohle A. Early glomerular lesions in amyloidosis. Virchows Arch A. 1981;390:259–272. doi:10.1007/BF00496558.
  • Tasoni A, Barbiano Di Belgiojoso G, Nebuloni M. Electron microscopy in the diagnosis of amyloidosis. In: Sarantseva S, ed. Amyloidosis: Mechanisms and Prospects for Therapy. InTech; 2011: Chapter 7. ISBN: 978-953-307-253-1. doi:10.5772/19102.
  • Veeramachaneni R, Gu X, Herrera GA. Atypical amyloidosis: diagnostic challenges and the role of immunoelectron microscopy in diagnosis. Ultrastruct Pathol. 2004;28:75–82.
  • Miura K, Khirasawa H. Amyloid A (AA) fibril formation in renal tubules occurs intracytoplasmically, possibly at the site of membrane assembling structures. Amyloid. 1994;1:107–113. doi:10.3109/13506129409148633.
  • El-Zoghby Z, Lager D, Gregoire J, et al. Intra-tubular amyloidosis. Kidney Int. 2007;72(10):1282–1288. doi:10.1038/sj.ki.5002411.
  • Tagouri Y, Sanders PW, Picken MM, et al. In vitro AL-amyloid formation by rat and human mesangial cells. Lab Invest. 1996;74:290–302.
  • Solomon A, Weiss DT, Schell M, et al. Transgenic mouse model of AA amyloidosis. Am J Pathol. 1999;154:1267–1272. doi:10.1016/S0002-9440(10)65378-3.
  • Russell WJ, Cardelli J, Harris E, et al. Monoclonal light chain-mesangial cells interactions: early signaling events and subsequent pathologic effects. Lab Invest. 2001;81:889–903. doi:10.1038/labinvest.3780278.
  • Teng J, Turbat-Herrera EA, Herrera GA. Extrusion of amyloid fibrils to the extracellular space in experimental mesangial AL-amyloidosis: transmission and scanning electron microscopy studies and correlation with renal biopsy observations. Ultrastruct Pathol. 2014;38:104–115. doi:10.3109/01913123.2013.861568.
  • Vora M, Kevil CG, Herrera GA. Contribution of human smooth muscle cells to amyloid angiopathy in AL (light chain) amyloidosis. Ultrastruct Pathol. 2017;41:358368. doi:10.1080/01913123.2017.1349852.
  • Shirahama T, Cohen AS. Intralysosomal formation of amyloid fibrils. Am J Pathol. 1975;81:101–116.
  • Shirahama T, Cohen AS. An analysis of the close relationship of lysosomes to early deposits of amyloid. Ultrastructural evidence in experimental mouse amyloidosis. Am J Pathol. 1973;73:97–114.
  • Epstein WC, Tran M, Wood IS. Formation of “amyloid” fibrils in vitro by action of human kidney lysosomal enzymes on Bence Jones proteins. J Lab Clin Med. 1974;84:107–110.
  • Teng J, Turbat-Herrera EA, Herrera GA. Animal model of renal AL-amyloidogenesis depicting the crucial role of lysosomes. Kidney Int. 2014;86:738–746. doi:10.1038/ki.2014.122.
  • Tagouri Y, Sanders PW, Zhu I, et al. Glomerulopathic monoclonal light chains potentiate mesangial cell apoptosis in vitro (Abstract). Lab Invest. 1995;92:161A.
  • Isaac J, Kerby JD, Russell WJ, et al. In-vitro modulation of AL-amyloid formation by human mesangial cells exposed to amyloidogenic light chains. Amyloid. 1998;5:238–246. doi:10.3109/13506129809007296.
  • Herrera GA, Shultz J, Soong S, Sanders PW. Growth factors in monoclonal light chain-related renal diseases. Hum Pathol. 1994;25:883–892. doi:10.1016/0046-8177(94)90007-8.
  • Herrera GA, Turbat-Herrera EA. Differential diagnosis of amyloid in surgical pathology: organized deposits and other materials in the differential diagnosis of amyloidosis. In: Picken MM, Dogan A, Herrera GA, eds. Amyloid and Related Disorders: Surgical Pathology and Clinical Correlations. Current Clinical Pathology Series. New York, NY: Humana Press, Springer; 2012:113–127.
  • Alpers C. Fibrillary glomerulonephritis and immunotactoid glomerulopathy: two entities, not one. Am J Kidney Dis. 1993;22:448–451. doi:10.1016/S0272-6386(12)70151-8.
  • Fogo A, Qureshi N, Horn RG. Morphologic and clinical features of fibrillary glomerulonephritis versus immunotactoid glomerulopathy. Am J Kidney Dis. 1993;22:367–377. doi:10.1016/S0272-6386(12)70138-5.
  • Rosenstock JL, Markowitz GS, Valeri AM, et al. Fibrillary and immunotactoid glomerulonephritis: distinct entities with different clinical and pathologic features. Kidney Int. 2003;63:1450–1461. doi:10.1046/j.1523-1755.2003.00853.x.
  • Alpers C, Kowaleska J. Fibrillary glomerulonephritis and immunotactoid glomerulopathy. J Am Soc Nephrol. 2008;19:34–37. doi:10.1681/ASN.2007070757.
  • Iskandar SS, Falk RJ, Jennette C. Clinical and pathologic features of fibrillary glomerulonephritis. Kidney Int. 1992;42:1401–1407. doi:10.1038/ki.1992.433.
  • Alexander MP, Desari S, Vrana JA, et al. Congophilic fibrillary glomerulonephritis: a case series. Am J Kidney Dis. 2018;72:325–336. doi:10.1053/j.ajkd.2018.03.017.
  • Nasr S, Vrana JA, Dasari S, et al. DNAJB9 is a specific immunohistochemical marker for fibrillary glomerulonephritis. Kidney Int Rep. 2018;3(1):56–64. doi:10.1016/j.ekir.2017.07.017.
  • Vilayur E, Trevillian P, Walsh M. Monoclonal gammopathy and glomerulopathy associated with chronic lymphocytic leukemia. Nat Clin Pract Nephrol. 2009;5:5458. doi:10.1038/ncpneph0989.
  • Nasr SH, Fidler M, Cornell LD, et al. Immunotactoid glomerulopathy: clinicopathologic and proteomic study. Nephrol Dial Transplant. 2012;27:41374146. doi:10.1093/ndt/gfs348.
  • Ojemakinde K, Turbat-Herrera EA, Zeng X, et al. The many faces of cryoglobulinemic nephropathy: a clinico-pathologic study of 47 cases with emphasis on the value of electron microscopy. Ultrastruct Pathol. 2014;38:367376. doi:10.3109/01913123.2014.952803.
  • Herrera GA, Ojemakinde KO, Turbat-Herrera EA, et al. Immunotactoid glomerulopathy and cryoglobulinemic nephropathy: two entities with many similarities. A unified conceptual approach. Ultrastruct Pathol. 2015;39(4):270–280. doi:10.3109/01913123.2015.1017070.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.