1,512
Views
6
CrossRef citations to date
0
Altmetric
Basic Research

The osmotic demyelination syndrome: the resilience of thalamic neurons is verified with transmission electron microscopy

, , &
Pages 450-480 | Received 27 Sep 2020, Accepted 17 Nov 2020, Published online: 03 Jan 2021

References

  • Adams V, Mancall EL. Osmotic demyelination syndrome. Am J Med Sci. 1959;339:561–567.
  • Newell KL, Kleinschmidt-Demasters BK. Central pontine myelinolysis autopsy: a twelve-year retrospective analysis. J Neurol Sci. 1996;142(1–2):134–139. doi:10.1016/0022-510X(96)00175-X.
  • Martin RJ. Central pontine and extrapontine myelinolysis: the osmotic demyelination syndromes. J Neurol Neurosurg Psychiatry. 2004;75(suppl 3):iii 22–iii28. doi:10.1136/jnnp.2004.045906.
  • Abbott R, Silber E, Felber J, Ekpo E. Osmotic demyelination syndrome. BMJ. 2005;331(7520):829–830. doi:10.1136/bmj.331.7520.829.
  • Tullu MS, Deshmukh I, Muranjan MN, Kher AS, Lahiri KR. Extrapontine myelinolysis in a child with nephrotic syndrome. Pediatr Neurol. 2010;43(2):139–141. doi:10.1016/j.pediatrneurol.2010.04.006.
  • Zhu R-J, Lv Z-S, Shan C-L, Xu M-W, Luo B-Y. Pure word deafness associated with extrapontine myelinolysis. J Zhejiang Univ Sc B. 2010;11(11):842–847. doi:10.1631/jzus.B1000200.
  • Alleman AM. Osmotic demyelination syndrome: central pontine myelinolysis and extrapontine myelinolysis. Semin Ultrasound CT MR. 2014;35(2):153–159. doi:10.1053/j.sult.2013.09.009.
  • Singh TD, Fugate JE, Rabinstein AA. Central pontine and extrapontine myelinolysis: a systematic review. Eur J Neurol. 2014;21(12):1443–1450. doi:10.1111/ene.12571.
  • Laureno R, Karp BI. Myelinolysis after correction of hyponatremia. Ann Intern Med. 1997;126(1):57–62. doi:10.7326/0003-4819-126-1-199701010-00008.
  • Babanrao SA, Prahladan A, Kalidos K, Ramachandran K. Osmotic myelinolysis: does extrapontine myelinolysis precede central pontine myelinolysis? Report of two cases and review of literature. Indian J Radiol Imaging. 2015;25(2):177–183. doi:10.4103/0971-3026.155870.
  • Laureno R, Lamotte G, Mark AS. Sequential MRI in pontine and extrapontine myelinolysis following rapid correction of hyponatremia. BMC Res Notes. 2018;11(1):707. doi:10.1186/s13104-018-3816-5.
  • Gocht A, Colmant HJ. Central pontine and extrapontine myelinolysis: a report of 58 cases. Clin Neuropathol. 1987;6:262–270.
  • Brunner JE, Redmond JM, Haggar AM, Kruger DF, Elias SB. Central pontine myelinolysis and pontine lesions after rapid correction of hyponatremia: a prospective magnetic resonance imaging study. Ann Neurol. 1990;27(1):61–66. doi:10.1002/ana.410270110.
  • Kimura K, Yasaka M, Terasaki S, Oita J, Yamaguchi T. A case of central pontine and extra-pontine myelinolysis demonstrated by magnetic resonance imaging. Rinsho Shinkeigaku. 1991: 31(11): 1202–1207. Article in Japanese
  • Yuh WT, Simonson TM, D’Alessandro MP, Smith KS, Hunsicker LG. Temporal changes of MR findings in central pontine myelinolysis. AJNR Am J Neuroradiol. 1995;16:975–977.
  • Cramer SC, Stegbauer KC, Schneider A, et al. Decreased diffusion in central pontine myelinolysis. AJNR Am J Neuroradiol. 2001;22(8):1476–1479.
  • Ruzek KA, Campeau NG, Miller GM. Early diagnosis of central pontine myelinolysis with diffusion-weighted imaging. AJNR Am J Neuroradiol. 2004;25:210–213.
  • Hagiwara K, Okada Y, Shida N, Yamashita Y. Extensive central and extrapontine myelinolysis in a case of chronic alcoholism without hyponatremia: a case report with analysis of serial MR findings. Intern Med. 2008;47(5):431–435. doi:10.2169/internalmedicine.47.0634.
  • Dujmović I, Vitas J, Zlatarić N, Drulović J. Central pontine myelinolysis in a chronic alcoholic: a clinical and brain magnetic resonance imaging follow-up. Vojnosanit Pregl. 2013;70(8):785–788. doi:10.2298/VSP1308785D.
  • Bhatia S, Kapoor AK, Sharma A, Gupta R, Kataria S. Cerebral encephalopathy with extrapontine myelinolysis in a case of postpartum hypernatremia. Indian J Radiol Imaging. 2014;24(1):57–60. doi:10.4103/0971-3026.130697.
  • Zunga PM, Farooq O, Dar MI, et al. Extra pontine osmotic demyelination syndrome. Ann Neurosci. 2015;22:51–53.
  • Barhaghi K, Molchanova-Cook O, Rosenburg M, et al. Osmotic demyelination syndrome revisited: review with neuroimaging. J La State Med Soc. 2017;169(4):89–93.
  • Garg P, Aggarwal A, Malhotra R, Dhall S. Osmotic demyelination syndrome - evolution of extrapontine before pontine myelinolysis on magnetic resonance imaging. J Neurosci Rural Pract. 2019;10(1):126–135. doi:10.4103/jnrp.jnrp_240_18.
  • Adrogué HJ, Madias NE. Hyponatraemia. N Engl J Med. 2000;342(21):1581–1589. doi:10.1056/NEJM200005253422107.
  • King JD, Rosner MH. Osmotic demyelination syndrome. Am J Med Sci. 2010;339(6):561–567. doi:10.1097/MAJ.0b013e3181d3cd78.
  • Aratani S, Hara M, Nagahama M, et al. A low initial serum sodium level is associated with an increased risk of overcorrection in patients with chronic profound hyponatremia: a retrospective cohort analysis. BMC Nephrol. 2017;18(1):316.doi:10.1186/s12882-017-0732-1.
  • George JC, Zafar W, Bucaloiu ID, Chang AR. Risk factors and outcomes of rapid correction of severe hyponatremia. Clin J Am Soc Nephrol. 2018;13(7):984–992. doi:10.2215/CJN.13061117.
  • Woodfine JD, van Walraven C. Criteria for hyponatremic overcorrection: systematic review and cohort study of emergently ill patients. J Gen Intern Med. 2020;35(1):315–321. doi:10.1007/s11606-019-05286-y.
  • Crismale JF, Meliambro KA, DeMaria S Jr, et al. Prevention of the osmotic demyelination syndrome after liver transplantation: a multidisciplinary perspective. Am J Transplant. 2017;17(10):2537–2545. doi:10.1111/ajt.14317.
  • Filippatos TD, Makri A, Elisaf MS, Liamis G. Hyponatremia in the elderly: challenges and solutions. Clin Interv Aging. 2017;12:1957–1965. doi:10.2147/CIA.S138535.
  • Aegisdottir H, Cooray C, Wirdefeldt K, Piehl F, Sveinsson O. Incidence of osmotic demyelination syndrome in Sweden: a nationwide study. Acta Neurol Scand. 2019;140(5):342–349. doi:10.1111/ane.13150.
  • Adams RD, Victor M, Mancall EL. Central pontine myelinosis: a hitherto undescribed disease occurring in alcoholic and malnourished patients. Arch Neurol Psychiatry. 1959;81(2):154–172. doi:10.1001/archneurpsyc.1959.02340140020004.
  • Mascalchi M, Cincotta M, Piazzini M. Case report: MRI demonstration of pontine and thalamic myelinolysis in a normonatremic alcoholic. Clin Radiol. 1993;47(2):137–138. doi:10.1016/S0009-9260(05)81191-2.
  • Kelly J, Wassif W, Mitchard J, Gardner WN. Severe hyponatraemia secondary to beer potomania complicated by central pontine myelinolysis. Int J Clin Pract. 1998;52:585–587.
  • Liamis GL, Milionis HJ, Rizos EC, et al. Mechanisms of hyponatraemia in alcohol patients. Alcohol. 2000;35(6):612–622. doi:10.1093/alcalc/35.6.612.
  • Mochizuki H, Masaki T, Miyakawa T, et al. Benign type of central pontine myelinolysis in alcoholism – clinical, neuroradiological and electrophysiological findings. J Neurol. 2003;250(9):1077–1083. doi:10.1007/s00415-003-0157-6.
  • Uchino A, Yuzuriha T, Murakami M, et al. Magnetic resonance imaging of sequelae of central pontine myelinolysis in chronic alcohol abusers. Neuroradiology. 2003;45(12):877–880. doi:10.1007/s00234-003-1095-9.
  • Kuhn J, Harzheim A, Bewermeyer H. Central pontine myelinolysis with a hyperintense lesion in diffusion weighted MRI: overview by means of a case report. Röntgenpraxis. 2005;56(1):21–27. Article in German. doi:10.1016/j.rontge.2005.05.002.
  • An JY, Park SK, Han SR, Song IU. Central pontine and extrapontine myelinolysis that developed during alcohol withdrawal, without hyponatremia, in a chronic alcoholic. Intern Med. 2010;49(6):615–618. doi:10.2169/internalmedicine.49.3069.
  • Malhotra K, Ortega L. Central pontine myelinolysis with meticulous correction of hyponatraemia in chronic alcoholics. BMJ Case Rep. 2013;1–3. [ pii: bcr2013009970]. doi:10.1136/bcr-2013-009970.
  • Lodhi MU, Saleem TS, Kuzel AR, et al. Beer potomania - a syndrome of severe hyponatremia with unique pathophysiology: case studies and literature review. Cureus. 2017;9(12):e2000.doi:10.7759/cureus.2000.
  • Levine JP, Stelnicki E, Weiner HL, Bradley JP, McCarthy JG. Hyponatremia in the postoperative craniofacial pediatric patient population: a connection to cerebral salt wasting syndrome and management of the disorder. Plast Reconstr Surg. 2001;108(6):1501–1508. doi:10.1097/00006534-200111000-00009.
  • Coleman M. Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci. 2005;6(11):889–898. doi:10.1038/nrn1788.
  • Pandit L. Differential diagnosis of white matter diseases in the tropics: an overview. Ann Indian Acad Neurol. 2009;12:12–21.
  • Lawson B, Silva J. Central pontine myelinolysis and hyponatremia. Clinical case. [ Article in Spanish]. Rev Med Chil. 2001;129(4):427–432. doi:10.4067/S0034-98872001000400012
  • Burneo J, Vizcarra D, Miranda H. Central pontine myelinolysis and pregnancy: a case report and review of literature. Rev Neurol. 2000: 30(11): 1036–1040. [in Spanish]
  • Corona G, Simonetti L, Giuliani C, Sforza A, Peri A. A case of osmotic demyelination syndrome occurred after the correction of severe hyponatraemia in hyperemesis gravidarum. BMC Endocr Disord. 2014;14(1):34. doi:10.1186/1472-6823-14-34.
  • Baldrighi M, Sainaghi PP, Bellan M, Bartoli E, Castello LM. Hyperosmolar state: a pragmatic approach to properly manage sodium derangements. Curr Diabetes Rev. 2018;14(6):534–541. doi:10.2174/1573399814666180320091451.
  • Bonkowsky JL, Filloux FM. Extrapontine myelinolysis in a pediatric case of diabetic ketoacidosis and cerebral edema. J Child Neurol. 2003;18(2):144–147. doi:10.1177/08830738030180021201.
  • Sharma C, Kumawat BL, Panchal M, Shah M. Osmotic demyelination syndrome in type 1 diabetes in the absence of dyselectrolytaemia: an overlooked complication?. BMJ Case Rep. 2017; 2017:bcr2016219148. doi:10.1136/bcr-2016-219148
  • Stavroulopoulos A, Nakopoulou L, Xydakis AM, et al. Interstitial nephritis and nephrogenic diabetes insipidus in a patient treated with pemetrexed. Ren Fail. 2010;32(8):1000–1004. doi:10.3109/0886022X.2010.501930.
  • Tajitsu M, Yamada T, Cao X, et al. Osmotic demyelination syndrome complicating diabetes with anti-glutamic acid decarboxylase antibodies, diabetes and Graves’ disease: a case report. J Diabetes Investig. 2016;7(1):130–131. doi:10.1111/jdi.12377.
  • Arao K, Fujiwara T, Sakakura K, et al. Hyponatremia as a predictor for worsening heart failure in patients receiving cardiac resynchronization therapy. Circ J. 2013;77(1):116–122. doi:10.1253/circj.CJ-12-0672.
  • Jha AA, Behera V, Jairam A, Baliga KV. Osmotic demyelination syndrome in a normonatremic patient of chronic kidney disease. Indian J Crit Care Med. 2014;18(9):609–611. doi:10.4103/0972-5229.140153.
  • Sharma HS, Kiyatkin EA. Rapid morphological brain abnormalities during acute methamphetamine intoxication in the rat: an experimental study using light and electron microscopy. Journal of Chemical Neuroanatomy. 2009;37(1):18–32. doi:10.1016/j.jchemneu.2008.08.002.
  • Guha K, Spießhöfer J, Hartley A, Pearse S, Xiu PY, Sharma R. The prognostic significance of serum sodium in a population undergoing cardiac resynchronisation therapy. Indian Heart J. 2017;69(5):613–618. doi:10.1016/j.ihj.2017.01.019.
  • Martinez-Cano JP, Cortes-Castillo V, Martinez-Villa J, et al. Dysnatremia among runners in a half marathon performed under warm and humid conditions. BMJ Open Sport Exerc Med. 2018;4(1):e000351. eCollection. doi:10.1136/bmjsem-2018-000351.
  • Meinders AJ, Meinders AE. Hyponatremia during a long-distance run: due to excessive fluid intake. Ned Tijdschr Geneeskd. 2007;151:581–587.
  • Orakzai RH, Orakzai SH, Hasley PB. Treating hyponatremia: how slow is safe? Central pontine myelinolysis despite appropriate correction of hyponatremia. Eur J Intern Med. 2008;19(6):29–31. doi:10.1016/j.ejim.2007.08.009.
  • Facciorusso A, Amoruso A, Neve V, et al. Role of vaptans in the management of hydroelectrolytic imbalance in liver cirrhosis. World J Hepatol. 2014;6(11):793–799. doi:10.4254/wjh.v6.i11.793.
  • Yu C, Sharma N, Saab S. Hyponatremia: clinical associations, prognosis, and treatment in cirrhosis. Exp Clin Transplant. 2013;11(1):3–11. doi:10.6002/ect.2012.0147.
  • Park M, Son HJ, Kim GS. Osmotic demyelination syndrome following hyponatremia-oriented management in liver transplant: a single center 20-year experience. Exp Clin Transplant. 2019;17(4):540–545. doi:10.6002/ect.2018.0216.
  • Guillaumin J, DiBartola SP. Disorders of sodium and water homeostasis. Vet Clin North Am Small Anim Pract. 2017;47(2):293–312. doi:10.1016/j.cvsm.2016.10.015.
  • Burton AG, Hopper K. Hyponatremia in dogs and cats. J Vet Emerg Crit Care (San Antonio). 2019;29(5):461–471. doi:10.1111/vec.12881.
  • Kleinschmidt-DeMasters BK, Norenberg MD. Rapid correction of hyponatremia causes demyelination: relation to central pontine myelinolysis. Science. 1981;211(4486):1068–1070. doi:10.1126/science.7466381.
  • Illowsky BP, Laureno R. Encephalopathy and myelinolysis after rapid correction of hyponatraemia. Brain. 1987;110(4):855–867. doi:10.1093/brain/110.4.855.
  • Laureno R. Central pontine myelinolysis following rapid correction of hyponatremia. Ann Neurol. 1983;13(3):232–242. doi:10.1002/ana.410130303.
  • Verbalis JG, Drutarosky MD. Adaptation to chronic hypoosmolality in rats. Kidney Int. 1988;34(3):351–360. doi:10.1038/ki.1988.188.
  • Thurston JH, Hauhart RE. Brain amino acids decrease in chronic hyponatremia and rapid correction causes brain dehydration: possible clinical significance. Life Sci. 1987;40(26):2539–2542. doi:10.1016/0024-3205(87)90076-2.
  • Thurston JH, Hauhart RE, Nelson JS. Adaptive decreases in amino acids (taurine in particular), creatine, and electrolytes prevent cerebral edema in chronically hyponatremic mice: rapid correction (experimental model of central pontine myelinolysis) causes dehydration and shrinkage of brain. Metab Brain Di. 1987;2(4):223–241. doi:10.1007/BF00999694.
  • Sugimura Y, Takagi H, Murase T, et al. Prevention of demyelination induced by rapid correction of hyponatremia in mice. Environmental Med. 2002;46(2):58–61.
  • Iwama S, Sugimura Y, Suzuki H, et al. Time-dependent changes in proinflammatory and neurotrophic responses of microglia and astrocytes in a rat model of osmotic demyelination syndrome. Glia. 2011;59(3):452–462. doi:10.1002/glia.21114.
  • Bouchat J, Couturier B, Marneffe C, et al. Regional oligodendrocytopathy and astrocytopathy precede myelin loss and blood-brain barrier disruption in a murine model of osmotic demyelination syndrome. Glia. 2018;66(3):606–622. doi:10.1002/glia.23268.
  • Bouchat J, Gilloteaux J, Suain V, et al. Ultrastructural analysis of thalamus damages in a mouse model of osmotic-induced demyelination. Neurotox Res. 2019;36(1):144–162. doi:10.1007/s12640-019-00041-x.
  • Nicaise C, Marneffe C, Bouchat J, Gilloteaux J. Osmotic demyelination: from oligodendrocyte to astrocyte perspective. Int J Med Sci. 2019;20(5): pii: E1124 doi:10.3390/ijms20051124.
  • Yuridullah R, Kumar V, Nanavati S, Singhal M, Chandran C. Clinical resolution of osmotic demyelination syndrome following overcorrection of severe hyponatremia. Case Rep Nephrol. 2019;2019:1757656. doi:10.1155/2019/1757656.
  • Menger H, Jarg T. Outcome of central pontine and extrapontine myelinolysis. J Neurol. 1999;246(8):700–705. doi:10.1007/s004150050435.
  • Lambeck J, Hieber M, Dreßing A, Niesen WD. Central pontine myelinosis and osmotic demyelination syndrome. Dtsch Arztebl Int. 2019;116:600–606.
  • Tandukar S, Rondon-Berrios H. Treatment of severe symptomatic hyponatremia. Physiol Rep. 2019;7(21):e14265. doi:10.14814/phy2.14265.
  • Kiernan JA. Chromoxane cyanine R. II. Staining of animal tissues by the dye and its iron complexes. J Microsc. 1984;134(1):25–39. doi:10.1111/j.1365-2818.1984.tb00501.x.
  • Stefanović D. Use of eriochrome cyanine R for routine histology and histopathology: an improved dichromatic staining procedure. Biotechnic Histochem. 2015;90(6):470–474. doi:10.3109/10520295.2015.1058420.
  • Sternberger LA. Immunochemistry. New York: J Wiley & Sons; 1979.
  • Franklin K, Paxinos G. The Mouse Brain in Stereotaxic Coordinates. San Diego: Academic Press; 1997.
  • Bauer KF. Elektronenmikroskopische Beobachtungen an der menschlichen Himrinde. Fortsch Neurol Psych Grenzgebiete. 1968;36:274–309.
  • Vaughn JE, Skoff RP. Neuroglia in experimentally altered central nervous system. In: Bourne GH, ed. The Structure and Function of Nervous Tissue. Vol. V. New York: Academic Press. 1972; 39–72.
  • Peters A, Palay SL, Webster H de F. The fine structure of the nervous system. 3rd edition. Alan Peters (ed.)  New York: Oxford University Press. 1991.
  • Peters A, Palay SL, Webster HDF. The Fine Structure of the Nervous System. Peters A, ed. 3rd. New York: Oxford University Press; 1991.
  • Karasek M, Swiltosławski J, Zielińiska A. Ultrastructure of the central nervous system: the basics. Folia Neuropathol. 2004;42:1–9.
  • Brodal P. The Central Nervous System. 5th. New York: Oxford University Press; 2010.
  • Morell P. Myelin. 2nd edn. New York: Plenum Publishing Co.; 1984.
  • Jones EG. Thalamic circuitry and thalamocortical synchrony. Phil Trans R Soc Lond B Biol Sci. 2002; 357(1428): 1659-1673.
  • Jones EG. Thalamic circuitry and thalamocortical synchrony. Phil Trans R Soc Lond B Biol Sci. 2002;357(1428):1659–1673. doi:10.1098/rstb.2002.1168.
  • Jones EG. Thalamic organization and function after Cajal. Prog Brain Res. 2002;136:333–357.
  • Bokor H, Frère SG, Eyre MD, et al. Selective GABAergic control of higher-order thalamic relays. Neuron. 2005;45(6):929–940. doi:10.1016/j.neuron.2005.01.048.
  • Hammer S, Carrillo GL, Govindaiah G, et al. Nuclei-specific differences in nerve terminal distribution, morphology, and development in mouse visual thalamus. Neural Dev. 2014;16:1–20.
  • Liu XB, Warren RA, Jones EG. Synaptic distribution of afferents from reticular nucleus in ventroposterior nucleus of cat thalamus. J Comp Neurol. 1995;352:187–202.
  • Simpson K, Wang Y, Lin RC. Patterns of convergence in rat zona incerta from the trigeminal nuclear complex: light and electron microscopic study. J Comp Neurol. 2008;507(4):1341–1521. doi:10.1002/cne.21624.
  • Yeterian EH, Pandya DN. Corticothalamic connections of the posterior parietal cortex in the rhesus monkey. J Comp Neurol. 1985;237(3):408–426. doi:10.1002/cne.902370309.
  • Carpenter MB. Connectivity patterns of thalamic nuclei implicated in dyskinesia. Stereotact Funct Neurosurg. 1989;52(2–4):79–119. doi:10.1159/000099491.
  • Lopez C, Blanke O. The thalamocortical vestibular system in animals and humans. Brain Res Rev. 2011;67(1–2):119–146. doi:10.1016/j.brainresrev.2010.12.002.
  • Olsen GM, Witter MP. Posterior parietal cortex of the rat: architectural delineation and thalamic differentiation. J Comp Neurol. 2016;524(18):3774–3809. doi:10.1002/cne.24032.
  • Gankam-Kengne F, Nicaise C, Soupart A, et al. Astrocytes are an early target in osmotic demyelination syndrome. J Am Soc Nephrol. 2011;22(10):1834–1845. doi:10.1681/ASN.2010111127.
  • Gankam-Kengne F, Couturier BS, Soupart A, Brion JP, Decaux G. Osmotic stress-induced defective glial proteostasis contributes to brain demyelination after hyponatremia treatment. J Am Soc Nephrol. 2017;28(6):1802–1813. doi:10.1681/ASN.2016050509.
  • Gocht A, Lohler J. Changes in glial cell markers in recent and old demyelinated lesions in central pontine myelinolysis. Acta Neuropathol. 1990;80(1):46–58. doi:10.1007/BF00294221.
  • McCormick DA. Neurotransmitter actions in the thalamus and cerebral cortex. J Clin Neurophysiol. 1992;9(2):212–223. doi:10.1097/00004691-199204010-00004.
  • Soupart A, Decaux G. Therapeutic recommendations for management of severe hyponatremia: current concepts on pathogenesis and prevention of neurologic complications. Clin Nephrol. 1996;46:149–169.
  • Sood L, Sterns RH, Hix JK, Silver SM, Chen L. Hypertonic saline and desmopressin: a simple strategy for safe correction of severe hyponatremia. Am J Kidney Dis. 2013;61(4):571–578. doi:10.1053/j.ajkd.2012.11.032.
  • Giuliani C, Peri A. Effects of hyponatremia on the brain. J Clin Med. 2014;3(4):1163–1177. doi:10.3390/jcm3041163.
  • Baker EA, Tian Y, Adler S, Verbalis JG. Blood-brain barrier disruption and complement activation in the brain following rapid correction of chronic hyponatremia. Exp Neurol. 2000;165(2):221–230. doi:10.1006/exnr.2000.7474.
  • Rojiani AM, Prineas JW, Cho E-S. Electrolyte-induced demyelination in rats. 1. Role of the blood-brain barrier and edema. Acta Neuropathol. 1994;88(4):287–292. doi:10.1007/BF00310371.
  • Rojiani AM, Cho E-S, Sharer L, Prineas JW. Electrolyte-induced demyelination in rats. 2. Ultrastructural evolution. Acta Neuropathol. 1994;88(4):293–299. doi:10.1007/BF00310372.
  • Hochstrasser T, Rühling S, Hecher K, et al. Stereological investigation of regional brain volumes after acute and chronic cuprizone-induced demyelination. Cells. 2019;8(9):1024.doi:10.3390/cells8091024.
  • Chow BW, Gu C. Gradual suppression of transcytosis governs functional blood-retinal barrier formation. Neuron. 2017;93(6):1325–1333.e3. doi:10.1016/j.neuron.2017.02.043.
  • Chow BW, Nuñez V, Kaplan L, et al. Caveolae in CNS arterioles mediate neurovascular coupling. Nature. 2020;579(7797):106–110. doi:10.1038/s41586-020-2026-1.
  • Ono S, Inoue K, Mannen T, et al. Intracytoplasmic inclusion bodies of the thalamus and the substantia nigra, and Marinesco bodies in myotonic dystrophy: a quantitative morphological study. Acta Neuropathol. 1989;77(4):350–356.
  • Sato H, Sato M. Ultrastructural morphology of thalamic cytoplasmic inclusion bodies in El mouse. Exp Neurol. 1986;93(1):160–167. doi:10.1016/0014-4886(86)90155-X.
  • Arcelli P, Rassoni C, Regondi MC, De Biasi S, Spreafico R. GABAergic neurons in mammalian thalamus: a marker of thalamic complexity? Brain Res Bull. 1997;42(1):27–37. doi:10.1016/S0361-9230(96)00107-4.
  • Sherman SM, Guillery RW. On the actions that one nerve cell can have on another: distinguishing “drivers” from “modulators”. Proc Natl Acad Sci USA. 1998;95(12):7121–7126. doi:10.1073/pnas.95.12.7121.
  • Sherman SM. Thalamic relay functions. Prog Brain Res. 2001;134:51–69.
  • Sherman SM, Guillery RW. The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B Biol Sci. 2002;357(1428):1695–1708. doi:10.1098/rstb.2002.1161.
  • MÁ G-C, John YJ, Barbas H, Zikopoulos B. Distinction of neurons, glia and endothelial cells in the cerebral cortex: an algorithm based on cytological features. Front Neuroanat. 2016;10:107. doi:10.3389/fnana.2016.00107.
  • Bopp R, Holler-Rickauer S, Martin KAC, Schuhknecht GFP. An ultrastructural study of the thalamic input to layer 4 of primary motor and primary somatosensory cortex in the mouse. J Neurosci. 2017;37(9):2435–2448. doi:10.1523/JNEUROSCI.2557-16.2017.
  • Mullen RJ, Buck CR, Smith AM. NeuN, a neuronal specific nuclear protein in vertebrates. Development. 1992;116:201–211.
  • Alekseeva OS, Gusel’nikova VV, Beznin GV, Korzhevskii DE. Prospects of the nuclear protein NeuN application as an index of functional state of the vertebrate nerve cells. Zh Evol Biokhim Fiziol. 2015;51:313–323.
  • Gusel’nikova VV, Korzhevskiy DE. NeuN as a neuronal nuclear antigen and neuron differentiation marker. Acta Naturae. 2015;7(2):42–47. doi:10.32607/20758251-2015-7-2-42-47.
  • Duan W, Zhang Y-P, Hou Z, et al. Novel insights into NeuN: from neuronal marker to splicing regulator. Mol Neurobiol. 2016;53(3):1637–1647. doi:10.1007/s12035-015-9122-5.
  • You H, Kim YI, Im SY, et al. Immunohistochemical study of central neurocytoma, subependymoma, and subependymal giant cell astrocytoma. J Neurooncol. 2005;74(1):1–8. doi:10.1007/s11060-004-2354-2.
  • Wolf HK, Buslei R, Schmidt-Kastner R, et al. NeuN: a useful neuronal marker for diagnostic histopathology. J Histochem Cytochem. 1996;44(10):1167–1171. doi:10.1177/44.10.8813082.
  • Darlington PJ, Goldman JS, Cui Q-L, Antel JP, Kennedy TE. Widespread immunoreactivity for neuronal nuclei in cultured human and rodent astrocytes. J Neurochem. 2008;104(5):1201–1209. doi:10.1111/j.1471-4159.2007.05043.x.
  • Kim KK, Adelstein RS, Kawamoto S. Identification of neuronal nuclei (NeuN) as Fox-3, a new member of the Fox-1 gene family of splicing factors. J Biol Chem. 2009;284(45):31052–31061. doi:10.1074/jbc.M109.052969.
  • Kim KK, Kim YC, Adelstein RS, Kawamoto S. Fox-3 and PSF interact to activate neural cell-specific alternative splicing. Nucleic Acids Res. 2011;39(8):3064–3078. doi:10.1093/nar/gkq1221.
  • Maxeiner S, Glassmann A, Kao H-T, Schilling K. The molecular basis of the specificity and cross-reactivity of the NeuN epitope of the neuron-specific splicing regulator, Rbfox3. Histochem Cell Biol. 2014;141(1):43–55. doi:10.1007/s00418-013-1159-9.
  • Nickerson JA, Krochmalnic G, Wan KM, Penman S. Chromatin architecture and nuclear RNA. Proc Natl Acad Sci USA. 1989;86(1):177–181. doi:10.1073/pnas.86.1.177.
  • Ma B, JP D, Phillips H, et al. Deletion of the hemopexin or heme oxygenase-2 gene aggravates brain injury following stroma-free hemoglobin-induced intracerebral hemorrhage. J Neuroinflammation. 2016;13:26. doi:10.1186/s12974-016-0490-1.
  • Hakim NH, Kounishi T, Alam AH, Tsukahara T, Suzuki H. Alternative splicing of Mef2c promoted by Fox-1 during neural differentiation in P19 cells. Genes Cells. 2010;15(3):255–267. doi:10.1111/j.1365-2443.2009.01378.x.
  • Dent MA, Segura-Anaya E, Alva-Medina J, Aranda-Anzaldo A. NeuN/Fox-3 is an intrinsic component of the neuronal nuclear matrix. FEBS Lett. 2010;584(13):2767–2771. doi:10.1016/j.febslet.2010.04.073.
  • Dredge BK, Jensen KB. NeuN/Rbfox3 nuclear and cytoplasmic isoforms differentially regulate alternative splicing and nonsense-mediated decay of Rbfox2. PLoS One. 2011;6(6):e21585. doi:10.1371/journal.pone.0021585.
  • Thiry M, Lepoint A, Goessens G. Re-evaluation of the site of transcription in Ehrlich tumour cell nucleoli. Biol Cell. 1985;54(1):57–64. doi:10.1111/j.1768-322X.1985.tb00380.x.
  • Thiry M, Goessens G. Distinguishing the sites of pre-rRNA synthesis and accumulation in Ehrlich tumor cell nucleoli. J Cell Sci. 1991;99:759–767.
  • Schwarzacher HG, Wachtler F. The functional significance of nucleolar structures. Ann Genet. 1991;34:151–160.
  • Schwarzacher HG, Wachtler F. The nucleolus. Anat Embryol (Berl). 1993;188(6):515–536. doi:10.1007/BF00187008.
  • Thiry M, Cheutin T, O’Donohue M-F, Kaplan H, Ploton D. Dynamics and three- dimensional localization of ribosomal RNA within the nucleolus. RNA. 2000;6(12):1750–1761. doi:10.1017/S1355838200001564.
  • Fakan S, Hernandez-Verdun D. The nucleolus and the nucleolar organizer regions. Biol Cell. 1986;56(3):189–205. doi:10.1111/j.1768-322X.1986.tb00452.x.
  • Thiry M, Thiry-Blaise L. In situ hybridization at the electron microscope level: an improved method for precise localization of ribosomal DNA and RNA. Eur J Cell Biol. 1989;50:235–243.
  • Derenzini M, Thiry M, Goessens G. Ultrastructural cytochemistry of the mammalian cell nucleolus. J Histochem Cytochem. 1990;38(9):1237–1256. doi:10.1177/38.9.2201735.
  • Biggiogera M, Malatesta M, Abolhassani-Dadras, et al. Revealing the unseen: the organizer region of the nucleolus. J Cell Sci. 2001;114:3199–3205.
  • Thiry M, Goessens G. Where, within the nucleolus, are the rRNA genes located? Exp Cell Res. 1992;200(1):1–4. doi:10.1016/S0014-4827(05)80064-3.
  • Angelier N, Tramier M, Louvet E, et al. Tracking the interactions of rRNA processing proteins during nucleolar assembly in living cells. Mol Biol Cell. 2005;16(6):2862–2871. doi:10.1091/mbc.e05-01-0041.
  • Raska I, Shaw PJ, Cmarko D. New insights into nucleolar architecture and activity. Int Rev Cytol. 2006;255:177–234.
  • Gitler D, Xu Y, Kao HT, et al. Molecular determinants of synapsin targeting to presynaptic terminals. J Neurosci. 2004;24(14):3711–3720. doi:10.1523/JNEUROSCI.5225-03.2004.
  • Buratti E. Baralle FE Influence of RNA secondary structure on the pre-mRNA splicing process. Mol Cell Biol. 2004;24(24):10505–10514. doi:10.1128/MCB.24.24.10505-10514.2004.
  • Li Q, Lee J-A, Black DL. Neuronal regulation of alternative pre-mRNA splicing. Nature Rev Neurosci. 2007;8(11):819–831. doi:10.1038/nrn2237.
  • Gu J, Chen F, Chu D, et al. Rbfox3/NeuN regulates alternative splicing of tau exon 10. J Alzheimers Dis. 2018;66(4):1695–1704. doi:10.3233/JAD-180882.
  • Burns ER, Soloff BL, Hanna C, Buxton DF. Nuclear pocket associated with the nucleolus in normal and neoplastic cells. Cancer Res. 1971;31:159–165.
  • Buxton DF. Nuclear pocket associated with the nucleolus in normal and neoplastic cells. Cancer Res. 1971;31:159–165.
  • Dupuy-Coin AM, Moens P, Bouteille M. Three-dimensional analysis of given cell structures: nucleolus, nucleoskeleton, and nuclear inclusions. Methods Achiev Exp Pathol. 1986;12:1–25.
  • Bourgeois CA, Hubert J. Spatial relationship between the nucleolus and the nuclear envelope: structural aspects and functional significance. Int Rev Cytol. 1988;111:1–52.
  • Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton. Science. 1993;260(5111):1124–1127. doi:10.1126/science.7684161.
  • Coene ED, Van Oostveldt P, Willems K, van Emmelo J, De Potter CR. BRCA1 is localized in cytoplasmic tube-like invaginations in the nucleus. Nature Genet. 1997;16(2):122–124. doi:10.1038/ng0697-122.
  • Fricker M, Hollinshead M, White N, Vaux D. Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J Cell Biol. 1997;136(3):531–544. doi:10.1083/jcb.136.3.531.
  • Maniotis AJ, Chen CS, Ingber DE. Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci USA. 1997;94(3):849–854. doi:10.1073/pnas.94.3.849.
  • Pederson T. The plurifunctional nucleolus. Nucleic Acids Res. 1998;26(17):3871–3876. doi:10.1093/nar/26.17.3871.
  • Pederson T. The nucleolus. Cold Spring Harb Perspect Biol. 2011;3(3): pii: a000638. doi:10.1101/cshperspect.a000638.
  • Johnson N, Krebs M, Boudreau R, et al. Actin-filled nuclear invaginations indicate degree of cell de-differentiation. Differentiation. 2003;71(7):414–424. doi:10.1046/j.1432-0436.2003.7107003.x.
  • Lammerding J, Lee RT. Mechanical properties of interphase nuclei probed by cellular strain application. Methods Mol Biol. 2009;464:13–26.
  • Mirre C, Lammerding J. Mechanics of the nucleus. Compr Physiol. 2011;1:783–807.
  • Mukherjee RN, Chen P, Levy DL. Recent advances in understanding nuclear size and shape. Nucleus. 2016;7(2):167–186. doi:10.1080/19491034.2016.1162933.
  • Drozdz MM, Vaux DJ. Shared mechanisms in physiological and pathological nucleoplasmic reticulum formation. Nucleus. 2017;8(1):34–45. doi:10.1080/19491034.2016.1252893.
  • Delpire E, Duchêne C, Goessens G, Gilles R. Effects of osmotic shocks on the ultrastructure of different tissues and cell types. Exp Cell Res. 1985;160(1):106–116. doi:10.1016/0014-4827(85)90240-X.
  • Bourgeois CA, Hernandez-Verdun D, Hubert J, Bouteille M. Silver staining of NORs in electron microscopy. Exp Cell Res. 1979;123(2):449–452. doi:10.1016/0014-4827(79)90498-1.
  • Clubb BH, Locke M. 3T3 cells have nuclear invaginations containing F-actin. Tissue Cell. 1998;30(6):684–691. doi:10.1016/S0040-8166(98)80087-6.
  • Alam SG, Lovett D, Kim DI, Roux KJ, Dickinson RB, Lele TP. The nucleus is an intracellular propagator of tensile forces in NIH 3T3 fibroblasts. J Cell Sci. 2015;128(10):1901–1911. doi:10.1242/jcs.161703.
  • Poplawski GHD, Kawaguchi R, Van Niekerk E, et al. Injured adult neurons regress to an embryonic transcriptional growth state. Nature. 2020;581(7806):77–82. doi:10.1038/s41586-020-2200-5.
  • Valentin G. Repertorium für Anatomie und Physiologie, Vol. 1. Berlin:Verlag von Veit und Comp; 1836:1–293.
  • Schwann T. Mikroskopische Untersuchungen über die Übereinstimmung in der Struktur und dem Wachsthum der Theiren und Pflanze. Berlin: Verlag der Sander’schen Buchhandlung; 1839:1–270.
  • Montgomery TH. Comparative cytological studies, with especial regard to the morphology of the nucleolus. J Morph. 1898;15:265–582. doi:10.1002/jmor.1050150204.
  • Goessens G. The nucleolar fibrillar centres in various cell types in vivo or in vitro. Cell Tissue Res. 1976;173(3):315–324. doi:10.1007/BF00220319.
  • Goessens G. Nucleolar ultrastructure during reversible inhibition of RNA synthesis in chick fibroblasts cultivated in vitro. J Ultrastruct Res. 1978;65(1):83–89. doi:10.1016/S0022-5320(78)90024-2.
  • Goessens G. Relations between fibrillar centres and nucleolus-associated chromatin in Ehrlich tumour cells. Cell Biol Int Rep. 1979;3(4):337–343. doi:10.1016/S0309-1651(79)80004-1.
  • Goessens G. Localisation of nucleolus-organizing regions in interphase cells. Cell Tissue Res. 1979;200(1):159–161. doi:10.1007/BF00236896.
  • Bouteille M, Hernandez-Verdun D. Localization of a gene: the nucleolar organizer. Biomedicine (Taipei). 1979;30:282–287.
  • Goessens G. Nucleolar structure. Int Rev Cytol. 1984;87:107–158.
  • Radoux D, Lepoint A, Goessens G. Cytological study of nucleoli and nucleolar organizers during inhibition of RNA synthesis. Bull Assoc Anat (Nancy). 1980;64(185):259–266. [In French].
  • Mirre C, Knibiehler B. A re-evaluation of the relationships between the fibrillar centres and the nucleolus-organizing regions in reticulated nucleoli: ultrastructural organization, number and distribution of the fibrillar centres in the nucleolus of the mouse Sertoli cell. J Cell Sci. 1982;55:247–259.
  • Mirre C, Stahl A. Ultrastructural organization, sites of transcription and distribution of fibrillar centres in the nucleolus of the mouse oocyte. J Cell Sci. 1981;48:139–148.
  • Ploton D, Thiry M, Menager M, et al. Behaviour of nucleolus during mitosis. A comparative ultrastructural study of various cancerous cell lines using the Ag-NOR staining procedure. Chromosoma. 1987;95(2):95–107. doi:10.1007/BF00332182.
  • Chelidze PV, Mdivani TV, Dzidziguri DV. et al., The 3-dimensional organization of the nucleolus and the nucleolus organizer regions in differentiated cells. II. The reticular, vacuolized and nucleolonemal nucleoli of hepatocytes from the intact mouse liver and of hepatocytes stimulated to proliferation as a result of partial hepatectomy. Tsitologiia. 1992; 34(9): 17–25. Article in Russian
  • Chelidze PV, Dzidziguri DV, Zarandiia MA. et al., The 3-dimensional organization of the nucleolus and nucleolus-organizer regions of differentiated cells. IV. The structural and functional heterogeneity of the nucleoli in the epithelium of the proximal nephron in the mouse. Tsitologiia. 1993; 35(10): 3–12. Article in Russian
  • Chelidze PV, Dzidziguri DV, Kintsurashvili LN. et al., The dependence of the 3-dimensional organization and length of the nucleolonema in the hepatocyte nucleoli of normal and regenerating rat livers on the nucleosome structure of the intranucleolar chromatin. Tsitologiia. 1995; 37(9–10): 859–871. Article in Russian
  • Jamison JM. Effect of enthidium on the morphology, antiviral activity and subcellular distribution of Poly r(A-U). Cell Biol Int. 1993;17(12):1091–1106. doi:10.1006/cbir.1993.1042.
  • Krabill K, Jamison JM, Gilloteaux J, Summers JL. Subcellular localization and antiviral activity of carminic acid/poly r(A-U) combinations. Cell Biol Int. 1993;17(10):919–934. doi:10.1006/cbir.1993.1014.
  • Thiry M, Jamison JM, Gilloteaux J, et al. Ultrastructural nucleolar alterations induced by an ametantrone/polyr(A-U) complex. Exp Cell Res. 1997;236(1):275–284. doi:10.1006/excr.1997.3743.
  • Thiry M, Ploton D, Menager M, Goessens G. Ultrastructural distribution of DNA within the nucleolus of various animal cell lines or tissues revealed by terminal deoxynucleotidyl transferase. Cell Tissue Res. 1993;271(1):33–45. doi:10.1007/BF00297539.
  • Thiry M, Scheer U, Goessens G. Localization of DNA within Ehrlich tumour cell nucleoli by immunoelectron microscopy. Biol Cell. 1988;63(1):27–34. doi:10.1111/j.1768-322X.1988.tb00738.x.
  • Thiry M, Scheer U, Goessens G. Localization of nucleolar chromatin by immunocytochemistry and in situ hybridization at the electron microscopy level. Electron Microsc Rev. 1991;4(1):85–110.doi:10.1016/0892-0354(91)90017-7.
  • Schwarzacher HG, Mosgoeller W. Ribosome biogenesis in man: current views on nucleolar structures and function. Cytogenet Cell Genet. 2000;91(1–4):243–252. doi:10.1159/000056853.
  • Boisvert F-M, van Kőningsbruggen S, Navascués J, Lamond AI. The multifunctional nucleolus. Nat Rev Mol Cell Biol. 2007;8(7):574–585. doi:10.1038/nrm2184.
  • Mattaj IW, Tollervey D, Séraphin B. Small nuclear RNAs in messenger RNA and ribosomal RNA processing. Faseb J. 1993;7(1):47–53. doi:10.1096/fasebj.7.1.8422974.
  • Scheer U, Thiry M, Goessens G. Structure, function and assembly of the nucleolus. Trends Cell Biol. 1993;3(7):236–241. doi:10.1016/0962-8924(93)90123-I.
  • Trendelenburg MF, Zatsepina OV, Waschek T, et al. Multiparameter microscopic analysis of nucleolar structure and ribosomal gene transcription. Histochem Cell Biol. 1996;106(2):167–192.
  • Vandelaer M, Thiry M, Goessens G. AgNOR proteins from morphologically intact isolated nucleoli. Life Sci. 1999;64(22):2039–2047. doi:10.1016/S0024-3205(99)00151-4.
  • Savino TM, Gébrane-Younès J, De Mey J, Sibarita J-B, Hernandez-Verdun D. Nucleolar assembly of the rRNA processing machinery in living cells. J Cell Biol. 2001;153(5):1097–1110. doi:10.1083/jcb.153.5.1097.
  • Hernandez-Verdun D, Roussel P, Thiry M, Sirri V, Lafontaine DL. The nucleolus: structure/function relationship in RNA metabolism. Wiley Interdiscip Rev RNA. 2010;1(3):415–431. doi:10.1002/wrna.39.
  • Jamison JM, Gilloteaux J, Perlaky L, et al. Nucleolar changes and fibrillarin redistribution following apatone treatment of human bladder carcinoma cells. J Histochem Cytochem. 2010;58(7):635–651. doi:10.1369/jhc.2010.956284.
  • Gilloteaux J, Jamison JM, Neal D, Summers JL. Synergistic antitumor cytotoxic actions of ascorbate and menadione on human prostate (DU145) cancer cells in vitro: nucleus and other injuries preceding cell death by autoschizis. Ultrastruct Pathol. 2014;38(2):116–140. doi:10.3109/01913123.2013.852645.
  • Gilloteaux J, Jamison JM, Arnold D, Summers JL. Autoschizis: a mode of cell death of cancer cells induced by a prooxidant treatment in vitro and in vivo. In: Radosevich JA, ed. Apoptosis and Beyond. Ch 28. New York: Wiley-Blackwell; 2018:583–694. doi:10.1002/9781119432463.
  • Hadjiolov AA. The Nucleolus and Ribosome Biogenesis. Vienna: Springer Verlag; 1985.
  • Grummt I. The nucleolus—guardian of cellular homeostasis and genome integrity. Chromosoma. 2013;122(6):487–497. doi:10.1007/s00412-013-0430-0.
  • Day RN, Periasamy A, Schaufele F. Fluorescence resonance energy transfer microscopy of localized protein interactions in the living cell nucleus. Methods. 2001;25(1):4–18. doi:10.1006/meth.2001.1211.
  • Fatica A, Tollervey D. Making ribosomes. Curr Opin Cell Biol. 14(3):313–318. doi:10.1016/S0955-0674(02)00336-8.
  • Lagace TA, Ridgway ND. The rate-limiting enzyme in phosphatidylcholine synthesis regulates proliferation of the nucleoplasmic reticulum. Mol Biol Cell. 2005;16(3):1120–1130. doi:10.1091/mbc.e04-10-0874.
  • Russell J, Zomerdijk JC. RNA-polymerase-I-directed rDNA transcription, life and works. Trends Biochem Sci. 2005;30(2):87–96. doi:10.1016/j.tibs.2004.12.008.
  • Louvet E, Tramier M, Angelier N, Hernandez-Verdun D. Time-lapse microscopy and fluorescence resonance energy transfer to analyze the dynamics and interactions of nucleolar proteins in living cells. Methods Mol Biol. 2008;463:123–135.
  • Szczepanowska K, Senft K, Heidler J, et al. A salvage pathway maintains highly functional respiratory complex I. Nature Commun. 2020;11(1):1643.doi:10.1038/s41467-020-15467-7.
  • Barron KD, Means ED, Larsen E. Ultrastructure of retrograde degeneration in thalamus of rat: 1. Neuronal somata dendrites. J Neuropathol Exp Neurol. 1973;32:218–244.
  • Brooks GA, Dubouchaud H, Brown M, Sicurello JP, Butz CE. Role of mitochondrial lactate dehydrogenase and lactate oxidation in the intracellular lactate shuttle. Proc Natl Acad Sci USA. 1999;96(3):1129–1134. doi:10.1073/pnas.96.3.1129.
  • Pérez-Escuredo J, Van Hée VF, Sboarina M, et al. Monocarboxylate transporters in the brain and in cancer. Biochim Biophys Acta. 2016;1863(10):2481–2497. doi:10.1016/j.bbamcr.2016.03.013.
  • Bak LK, Walls AB, Schousboe A, Waagepetersen HS. Astrocytic glycogen metabolism in the healthy and diseased brain. J Biol Chem. 2018;293(19):7108–7116. doi:10.1074/jbc.R117.803239.
  • Díaz-García CM, Mongeon R, Lahmann C, Koveal D, Zucker H, Yellen G. Neuronal stimulation triggers neuronal glycolysis and not lactate uptake. Cell Metab. 2017;26(2):361–374.e4. doi:10.1016/j.cmet.2017.06.021.
  • Yellen G. Fueling thought: management of glycolysis and oxidative phosphorylation in neuronal metabolism. J Cell Biol. 2018;217(7):2235–2246. doi:10.1083/jcb.201803152.
  • Zhu J, Li P, Zhou Y-G, Ye J. Altered energy metabolism during early optic nerve crush injury: implications of Warburg-like aerobic glycolysis in facilitating retinal ganglion cell survival. Neurosci Bull. 2020;36(7):761–777. doi:10.1007/s12264-020-00490-x.
  • Lui L, Lowe T. Small nucleolar RNAs and RNA-guided post-transcriptional modification. Essays Biochem. 2013;54:53–77. doi:10.1042/bse0540053.
  • Vincent WS. Structure and chemistry of nucleoli. Int Rev Cytol. 1955;4:269–298.
  • Porter KR. Observations on a submicroscopic basophilic component of cytoplasm. J Exp Med. 1953;97:727–750.
  • Palade GE, Porter KR. Studies on the endoplasmic reticulum. J Exp Med. 1954;100(6):641–656. doi:10.1084/jem.100.6.641.
  • Watson ML. The nuclear envelope; its structure and relation to cytoplasmic membranes. J Biophys Biochem Cytol. 1955;1(3):257–270. doi:10.1083/jcb.1.3.257.
  • Walter P, Gilmore R, Muller M, Blobel G. The protein translocation machinery of the endoplasmic reticulum. Philos Trans R Soc Lond B Biol Sci. 1982;300:225–228.
  • Franke WW. Nuclear envelopes. Structure and biochemistry of the nuclear envelope. Phil Trans R Soc Lond B. 1974;268:67–93.
  • Franke WW. Structure, biochemistry, and functions of the nuclear envelope. Int Rev Cytol. 1974268:67–93.
  • Gilloteaux J, Kashouty R, Yono N. The perinuclear space of pancreatic acinar cells and the synthetic pathway of zymogen in Scorpaena scrofa L.: ultrastructural aspects. Tissue Cell. 2008;40(1):7–20. doi:10.1016/j.tice.2007.08.004.
  • Goler-Baron V, Selitrennik M, Barkai O, et al. Transcription in the nucleus and mRNA decay in the cytoplasm are coupled processes. Genes Dev. 2008;22(15):2022–2027. doi:10.1101/gad.473608.
  • Hartenian E, Glaunsinger BA. Feedback to the central dogma: cytoplasmic mRNA decay and transcription are interdependent processes. Crit Rev Biochem Mol Biol. 2019;54(4):385–398. doi:10.1080/10409238.2019.1679083.
  • George R, Griffin JW. The proximo-distal spread of axonal degeneration in the dorsal columns of the rat. J Neurocytol. 1994;23(11):657–667. doi:10.1007/BF01181641.
  • Koshinaga M, Whittemore SR. The temporal and spatial activation of microglia in fiber tracts undergoing anterograde and retrograde degeneration following spinal cord lesion. J Neurotrauma. 1995;12(2):209–222. doi:10.1089/neu.1995.12.209.
  • Freeman MR. Signaling mechanisms regulating Wallerian degeneration. Curr Opin Neurobiol. 2014;27:224–231. doi:10.1016/j.conb.2014.05.001.
  • Geden MJ, Deshmukh M. Axon degeneration: context defines distinct pathways. Curr Opin Neurobiol. 2016;39:108–115. doi:10.1016/j.conb.2016.05.002.
  • Buss A, Schwab ME. Sequential loss of myelin proteins during Wallerian degeneration in the rat spinal cord. Glia. 2003;42(4):424–432. doi:10.1002/glia.10220.
  • Adalbert R, Nógrádi A, Szabó A, Coleman MP. The slow Wallerian degeneration gene in vivo protects motor axons but not their cell bodies after avulsion and neonatal axotomy. Eur J Neurosci. 2006;24(8):2163–2168. doi:10.1111/j.1460-9568.2006.05103.x.
  • Guo S, Tjärnlund-Wolf A, Deng W, et al. Comparative transcriptome of neurons after oxygen-glucose deprivation: potential differences in neuroprotection versus reperfusion. J Cereb Blood Flow Metab. 2018;38(12):2236–2250. doi:10.1177/0271678X18795986.
  • Sanders P, De Keyser J. Janus faces of microglia in multiple sclerosis. Brain Res Rev. 2007;54(2):274–285. doi:10.1016/j.brainresrev.2007.03.001.
  • Takefuji S, Murase T, Sugimura Y, et al. Role of microglia in the pathogenesis of osmotic-induced demyelination. Exp Neurol. 2007;204(1):88–94. doi:10.1016/j.expneurol.2006.09.025.
  • Ghosh N, DeLuca GC, Esiri MM. Evidence of axonal damage in human acute demyelinating diseases. J Neurol Sci. 2004;222(1–2):29–34. doi:10.1016/j.jns.2004.03.032.
  • Kumar V, Abbas A, Aster J. Cellular responses to stress and toxic insults: adaptation, injury, and death. In: Robbins Basic Pathology. 10th ed. Chapter 2. Philadelphia: Elsevier; 2017:3–23.
  • Kumar V, Abbas A, Fausto N, Aster J. Robbins and Cotran: Pathologic Basis of Disease. 8th ed. Philadelphia: Elsevier-Saunders; 2010:5–16.
  • Peña CE. Intracytoplasmic neuronal inclusions in the human thalamus. Light-microscopic, histochemical, and ultrastructural observations. Acta Neuropathol. 1980;52(2):157–159. doi:10.1007/BF00688015.
  • Aikawa H, Suzuki K, Iwasaki Y. Ultrastructural observation on the thalamic neuronal inclusion in young mice. Acta Neuropathol. 1983;59(4):316–318. doi:10.1007/BF00691499.
  • Ono S, Inoue K, Mannen T, et al. Intracytoplasmic inclusion bodies of the thalamus and the substantia nigra, and Marinesco bodies in myotonic dystrophy: a quantitative morphological study. Acta Neuropathol. 1989;77(4):350–356. doi:10.1007/BF00687369.
  • Takahashi H, Ohama E, Ikuta F. Are bunina bodies of endoplasmic reticulum origin? An ultrastructural study of subthalamic eosinophilic inclusions in a case of atypical motor neuron disease. Acta Pathol Jpn. 1991;41:889–894.
  • Cummings JF, de Lahunta A, Summers BA, et al. Eosinophilic cytoplasmic inclusions in sporadic equine motor neuron disease: an electron microscopic study. Acta Neuropathol. 1993;85(3):291–297. doi:10.1007/BF00227725.
  • Brabec V, Kleinwächter V, Vetterl V. Bioelectrochemistry of biomacromolecules. In: Lenaz G, Milazzo G, eds. Bioelectrochemistry of Biomacromolecules. Basel: Birkhäuser Verlag; 1997:1–104. doi:10.1007/978-3-0348-9179-0.
  • Brengues M. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science. 2005;310(5747):486–489. doi:10.1126/science.1115791.
  • Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. Stress-induced reversal of microRNA repression and mRNA P-body localization in human cells. Cold Spring Harb Symp Quant Biol. 2006;71:513–521. doi:10.1101/sqb.2006.71.038.
  • Pillai RS, Bhattacharyya SN, Filipowicz W. Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol. 2007;17(3):118–126. doi:10.1016/j.tcb.2006.12.007.
  • Parker R, Sheth U. P bodies and the control of mRNA translation and degradation. Mol Cell. 2007;25(5):635–646. doi:10.1016/j.molcel.2007.02.011.
  • Balagopal V, Polysomes PR. P bodies and stress granules: states and fates of eukaryotic mRNAs. Curr Opin Cell Biol. 2009;21(3):403–408. doi:10.1016/j.ceb.2009.03.005.
  • Von Roretz C, Di Marco S, Mazroui R, Gallouzi I-E. Turnover of AU-rich-containing mRNAs during stress: a matter of survival. Wiley Interdiscip Rev RNA. 2011;2(3):336–347. doi:10.1002/wrna.55.
  • Decker CJ, Parker R. P-bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol. 2012;4(9):a012286. doi:10.1101/cshperspecta012286.
  • Anderson KI, Wang YL, Small JV. Coordination of protrusion and translocation of the keratocyte involves rolling of the cell body. J Cell Biol. 1996;134(5):1209–1218. doi:10.1083/jcb.134.5.1209.
  • Kumar A, Maitra A, Sumit M, Ramaswamy S, Shivashankar GV. Actomyosin contractility rotates the cell nucleus. Sci Rep. 2015;4(1):3781. doi:10.1038/srep03781.
  • Bhattacharyya A, Oppenheim RW, Prevette D, et al. S100 is present in developing chicken neurons and Schwann cell and promotes motor neuron survival in vivo. J Neurol. 1992;23(4):451–466.
  • Bard F, Bourgeois CA, Costagliola D, Bouteille M. Rotation of the cell nucleus in living cells: a quantitative analysis. Biol Cell. 1985;54(2):135–142. doi:10.1111/j.1768-322X.1985.tb00388.x.
  • Fung LC, De Boni U. Modulation of nuclear rotation in neuronal interphase nuclei by nerve growth factor, by gamma-aminobutyric acid, and by changes in intracellular calcium. Cell Motil Cytoskeleton. 1988;10(3):363–373. doi:10.1002/cm.970100303.
  • Paddock SW. Rigidity of the nucleus during nuclear rotation in 3T3 cells. Exp Cell Res. 1988;175(2):409–413. doi:10.1016/0014-4827(88)90205-4.
  • Park PC, De Boni U. Dynamics of nucleolar fusion in neuronal interphase nuclei in vitro: association with nuclear rotation. Exp Cell Res. 1991;197(2):213–221. doi:10.1016/0014-4827(91)90425-T.
  • Gundersen GG, Worman HJ. Nuclear positioning. Cell. 2013;152(6):1376–1389. doi:10.1016/j.cell.2013.02.031.
  • Yang Z, Voke PR. Large-eddy simulation of boundary-layer separation and transition at a change of surface curvature. J Fluid Mech. 2001;439:305–333. doi:10.1017/S0022112001004633.
  • Garrett SJ, Peake N. The stability and transition of the boundary layer on a rotating sphere. J Fluid Mech. 2002;456:199–218. doi:10.1017/S0022112001007571.
  • Wu M-H, Wen C-Y, Yen R-H, et al. Experimental and numerical study of the separation angle for flow around a circular cylinder at low reynolds number. J Fluid Mech. 2004;515:233–260. doi:10.1017/S0022112004000436.
  • Kundu PK, Cohen IM, Dowling DR.  Fluid Mechanics.  (eds), Sixth Edition, Amsterdam: Elsevier/ Academic Press. 2016; p 171-196; 473-540 and 541-620.  https://doi.org/10.1016/C2009-0-63410-3
  • Salehi  MA, Mazaheri S,  Kazeminezhad MH.  Study of flow characteristics around a near-wall circular cylinder subjected to a steady cross-flow. Int J COE. 2018 : 1 (4): 45-55. http://ijcoe.org/browse.php?a_code=A-10-183-1&sid=1&slc_lang=en
  • Wiggins A. Fluid flow about immersed bodies flow stream U drag = pressure + friction. Part B. In: White F, ed. Fluid Mechanics, 7th. Ch 9. New York: McGrawHill Co; 2016:609–700.
  • Riback JA, Zhu L, Ferrolino MC, et al. Composition-dependent thermodynamics of intracellular phase separation. Nature. 2020;581(7807):209–214. doi:10.1038/s41586-020-2256-2.
  • Sanders DW, Kedersha N, Lee DSW, et al. Competing protein-RNA interaction networks control multiphase intracellular organization. Cell. 2020;181(2):306–324.doi:10.1016/j.cell.2020.03.050.
  • Wicke F, Moreitz S, Weidauer S. Osmotic demyelination syndrome due to severe hyponatremia mimicking hypoxic encephalopathy. Fortschr Neurol Psychiatr. 2017;85(4):212–215. doi:10.1055/s-0043-100460.
  • Li Q, Weiland A, Chen X. et al. Ultrastructural characteristics of neuronal death and white matter injury in mouse brain tissues after intracerebral hemorrhage: coexistence of ferroptosis, autophagy, and necrosis. Front Neurol. 2018;9:581. doi:10.3389/fneur.2018.00581.
  • Sterns RH, Silver SM. Complications and management of hyponatremia. Curr Opin Nephrol Hypertens. 2016;25(2):114–119. doi:10.1097/MNH.0000000000000200.
  • Vogel FS, Bouldin TW. The nervous system. In: Rubin E, Farber JL, eds. Pathology, 2nd ed. Chapter 28. Philadelphia: J.B. Lippincott; 1994:1373–1455.
  • Zhan J, Mann T, Joost S, Behrangi N, Frank M, Kipp M. The cuprizone model: dos and do nots. Cells. 2020;9(4):843. pii: E843. doi:10.3390/cells9040843.
  • Powers JM, McKeever PE. Central pontine myelinolysis. An ultrastructural and elemental study. J Neurol Sci. 1976;29(1):65–81. doi:10.1016/0022-510X(76)90081-2.
  • Adler S, Verbalis JG, Meyers S, Simplaceanu E, Williams DS. Changes in cerebral blood flow and distribution associated with acute increases in plasma sodium and osmolality of chronic hyponatremic rats. Exp Neurol. 2000;163(1):63–71. doi:10.1006/exnr.2000.7376.
  • Norenberg MD, Leslie KO, Robertson AS. Association between rise in serum sodium and central pontine myelinolysis. Ann Neurol. 1982;11(2):128–135. doi:10.1002/ana.410110204.
  • Popescu BFG, Bunyan RF, Guo Y, et al. Evidence of aquaporin involvement in human central pontine myelinolysis. Acta Neuropathol Commun. 2013;1(1):40.doi:10.1186/2051-5960-1-40.
  • Ghadially FN. Ultrastructural Pathology of the Cell and Matrix. 4th ed. Boston: Butterworth-Heinemann; 1997:30–31.
  • Sullivan AA, Chervin RD, Albin RL. Parkinsonism after correction of hyponatremia with radiological central pontine myelinolysis and changes in the basal ganglia. J Clin Neurosci. 2000;7(3):256–259. doi:10.1054/jocn.1999.0192.