137
Views
5
CrossRef citations to date
0
Altmetric
BASIC RESEARCH

The Effect of Induced Diabetes Mellitus on the Cerebellar Cortex of Adult Male Rat and the Possible Protective Role of Oxymatrine: A Histological, Immunohistochemical and Biochemical Study

ORCID Icon, , &
Pages 182-196 | Received 04 Mar 2021, Accepted 03 May 2021, Published online: 18 May 2021

References

  • Ozougwu J, Obimba K, Belonwu C, Unakalamba C. The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J Physiol Pathophysiol. 2013;4(4):46–57. doi:10.5897/JPAP2013.0001.
  • Mohammadi J, Saadipour K, Delaviz H, Mohammadi B. Anti-diabetic effects of an alcoholic extract of Juglans regia in an animal model. Turk J Med Sci. 2011;41:685–691.
  • Patel P, Macerollo A. Diabetes mellitus: diagnosis and screening. Am Fam Physician. 2010;81:863–870.
  • Brands AM, Kessels RP, De Haan EH, Kappelle LJ, Biessels GJ. Cerebral dysfunction in type 1 diabetes: effects of insulin, vascular risk factors and blood-glucose levels. Eur J Pharmacol. 2004;490(1–3):159–168. doi:10.1016/j.ejphar.2004.02.053.
  • Allen KV, Frier BM, Strachan MW. The relationship between type 2 diabetes and cognitive dysfunction: longitudinal studies and their methodological limitations. Eur J Pharmacol. 2004;490(1–3):169–175. doi:10.1016/j.ejphar.2004.02.054.
  • Hernández-Fonseca JP, Rincón J, Pedreañez A, et al. Structural and ultrastructural analysis of cerebral cortex, cerebellum, and hypothalamus from diabetic rats. Exp Diabetes Res. 2009;2009:2009. doi:10.1155/2009/329632.
  • Duarte AI, Moreira PI, Oliveira CR. Insulin in central nervous system: more than just a peripheral hormone. J Aging Res. 2012;2012:2012. doi:10.1155/2012/384017.
  • Kleinridders A, Ferris HA, Cai W, Kahn CR. Insulin action in brain regulates systemic metabolism and brain function. Diabetes. 2014;63(7):2232–2243. doi:10.2337/db14-0568.
  • Tedesco AM, Chiricozzi FR, Clausi S, Lupo M, Molinari M, Leggio MG. The cerebellar cognitive profile. Brain. 2011;134(12):3672–3686. doi:10.1093/brain/awr266.
  • Fang P, An J, Tan X, et al. Changes in the cerebellar and cerebro-cerebellar circuit in type 2 diabetes. Brain Res Bull. 2017;130:95–100. doi:10.1016/j.brainresbull.2017.01.009.
  • Hami J, Vafaei-Nezhad S, Ivar G, et al. Altered expression and localization of synaptophysin in developing cerebellar cortex of neonatal rats due to maternal diabetes mellitus. Metab Brain Dis. 2016;31(6):1369–1380. doi:10.1007/s11011-016-9864-4.
  • Rossini AA, Like AA, Chick WL, Appel MC, Cahill GF. Studies of streptozotocin-induced insulitis and diabetes. Proc Natl Acad Sci U S A. 1977;74(6):2485–2489. doi:10.1073/pnas.74.6.2485.
  • Xu Y-Q, Jin S-J, Liu N, et al. Aloperine attenuated neuropathic pain induced by chronic constriction injury via anti-oxidation activity and suppression of the nuclear factor kappa B pathway. Biochem Biophys Res Commun. 2014;451(4):568–573. doi:10.1016/j.bbrc.2014.08.025.
  • Funaya N, Haginaka J. Matrine-and oxymatrine-imprinted monodisperse polymers prepared by precipitation polymerization and their applications for the selective extraction of matrine-type alkaloids from Sophora flavescens Aiton. J Chromatogr A. 2012;1248:18–23. doi:10.1016/j.chroma.2012.05.081.
  • Wang Y-P, Zhao W, Xue R, et al. Oxymatrine inhibits hepatitis B infection with an advantage of overcoming drug-resistance. Antiviral Res. 2011;89(3):227–231. doi:10.1016/j.antiviral.2011.01.005.
  • Zhou R, Xu Q, Xu Y, Xiong A, Wang Y, Ma P. Oxymatrine attenuated isoproterenol-induced heart failure in rats via regulation of COX-2/PGI2 pathway. Biomed Pharmacother. 2016;84:1359–1366. doi:10.1016/j.biopha.2016.10.070.
  • Wu C, Huang W, Guo Y, et al. Oxymatrine inhibits the proliferation of prostate cancer cells in vitro and in vivo. Mol Med Report. 2015;11(6):4129–4134. doi:10.3892/mmr.2015.3338.
  • Dai J-P, Wang Q-W, Su Y, et al. Oxymatrine inhibits influenza A virus replication and inflammation via TLR4, p38 MAPK and NF-κB pathways. Int J Mol Sci. 2018;19(4):965. doi:10.3390/ijms19040965.
  • Ding F, Li Y, Hou X, Zhang R, Hu S, Wang Y. Oxymatrine inhibits microglia activation via HSP60-TLR4 signaling. Biomed Rep. 2016;5(5):623–628. doi:10.3892/br.2016.776.
  • Cui L, Zhang X, Yang R, et al. Neuroprotection and underlying mechanisms of oxymatrine in cerebral ischemia of rats. Neurol Res. 2011;33(3):319–324. doi:10.1179/016164110X12759951866876.
  • Zeng X-Y, Zhou X, Xu J, et al. Screening for the efficacy on lipid accumulation in 3T3-L1 cells is an effective tool for the identification of new anti-diabetic compounds. Biochem Pharmacol. 2012;84(6):830–837. doi:10.1016/j.bcp.2012.07.003.
  • Zuo ML, Wang AP, Tian Y, Mao L, Song GL, Yang ZB. Oxymatrine ameliorates insulin resistance in rats with type 2 diabetes by regulating the expression of KSRP, PETN, and AKT in the liver. J Cell Biochem. 2019;120(9):16185–16194. doi:10.1002/jcb.28898.
  • Shi L, Shi L, Zhang H, et al. Oxymatrine ameliorates non-alcoholic fatty liver disease in rats through peroxisome proliferator-activated receptor-α activation. Mol Med Report. 2013;8(2):439–445. doi:10.3892/mmr.2013.1512.
  • Hashish H. Alteration of glial fibrillary acidic protein immunoreactivity in astrocytes of the cerebellum of diabetic rats and potential effect of insulin and ginger. Anat Physiol. 2015: 5(1): 2161–2940. 1000167
  • Eltahawy N, El-Hady A, Badawi M, Hammad A. Gamma amino butyric acid ameliorates jejunal oxidative damage in diabetic rats. Indian J Pharmaceut Educ Res. 2017;51(4):588–596. doi:10.5530/ijper.51.4.88.
  • Uchiyama M, Mihara M. Determination of malonaldehyde precursor in tissues by thiobarbituric acid test. Anal Biochem. 1978;86(1):271–278. doi:10.1016/0003-2697(78)90342-1.
  • Paglia DE, Valentine WN. Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 1967;70:158–169.
  • Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47(3):469–474. doi:10.1111/j.1432-1033.1974.tb03714.x.
  • Gamble M. The hematoxylins and eosin. In: Jd B MG, ed. Theory and Practice of Histological Techniques. 6th ed ed. Philadelphia, PA: Churchill Livingstone, Elsevier; 2008:p. 121‐34.
  • Shalaby AM, Alabiad MA, El Shaer DF. Resveratrol Ameliorates the Seminiferous Tubules Damages Induced by Finasteride in Adult Male Rats. Microsc Microanal. 2020;26(6):1176–1186. doi:10.1017/S1431927620024514.
  • Woods A, Stirling J. Electron microscope. In: Bancroft J, Gamble M, eds. Theory and Practice of Histological Techniques. Philadelphia, PA: Churchill Livingstone/Elsevier; 2008:p. 600.
  • Dawson-Saunders B, Trapp R. Section 5.6: Proportions When the Same Group Is Measured Twice. Basic & Clinical Biostatistics: Lange Medical Book. 3rd ed ed. New York, Montreal: McGraw-Hill Book Co.; 2001:115–118.
  • Choi J-H, Hwang I-K, Yi -S-S, et al. Effects of streptozotocin-induced type 1 diabetes on cell proliferation and neuronal differentiation in the dentate gyrus; correlation with memory impairment. Korean J Anat. 2009;42(1):41–48.
  • Sherif RN. Effect of cerebrolysin on the cerebellum of diabetic rats: an imunohistochemical study. Tissue Cell. 2017;49(6):726–733. doi:10.1016/j.tice.2017.10.006.
  • Hussein OA. Effect of genistein on the cerebellar cortex of adult male albino rats with streptozotocin-induced diabetes mellitus: a histological and immunohistochemical study. Egypt J Histol. 2015;38(4):778–792. doi:10.1097/01.EHX.0000473710.76297.3b.
  • Zhao B, Pan B-S, Shen S-W, et al. Diabetes-induced central neuritic dystrophy and cognitive deficits are associated with the formation of oligomeric reticulon-3 via oxidative stress. J Biol Chem. 2013;288(22):15590–15599. doi:10.1074/jbc.M112.440784.
  • Altinzo E, Oner Z, Elbe H, Vardi N. Neuro-protective effects of crocin on brain and cerebellum tissues in diabetic rats. Afr J Tradit Complement Altern Med. 2014;11(6):33–39. doi:10.4314/ajtcam.v11i6.2.
  • Huang L, Wang C, Ge R, Ni H, Zhao S. Ischemia deteriorates spike encoding at cortical GABAergic neurons and cerebellar Purkinje cells by increasing the intracellular Ca2+. Brain Res Bull. 2017;131:55–61. doi:10.1016/j.brainresbull.2017.03.005.
  • Nagayach A, Patro N, Patro I. Astrocytic and microglial response in experimentally induced diabetic rat brain. Metab Brain Dis. 2014;29(3):747–761. doi:10.1007/s11011-014-9562-z.
  • Razi EM, Ghafari S, Golalipour MJ. Effect of gestational diabetes on purkinje and granule cells distribution of the rat cerebellum in 21 and 28 days of postnatal life. Basic Clin Neurosci. 2015;6:6.
  • Bak DH, Zhang E, Yi M-H, et al. High ω3-polyunsaturated fatty acids in fat-1 mice prevent streptozotocin-induced Purkinje cell degeneration through BDNF-mediated autophagy. Sci Rep. 2015;5(1):15465. doi:10.1038/srep15465.
  • DeBoer T, Wewerka S, Bauer PJ, Georgieff MK, Nelson CA. Explicit memory performance in infants of diabetic mothers at 1 year of age. Dev Med Child Neurol. 2005;47(8):525–531. doi:10.1017/S0012162205001039.
  • Liu G, Zhang C, Yin J, et al. α-Synuclein is differentially expressed in mitochondria from different rat brain regions and dose-dependently down-regulates complex I activity. Neurosci Lett. 2009;454(3):187–192. doi:10.1016/j.neulet.2009.02.056.
  • Solmaz V, Köse Özlece H, Eroglu HA, Aktuğ H, Erbaş O, Taşkıran D. Accumulation of α-Synuclein in cerebellar Purkinje cells of diabetic rats and its potential relationship with inflammation and oxidative stress markers. Neurol Res Int. 2017;2017:2017. doi:10.1155/2017/5952149.
  • El-Dien S, El Gamal DA, Mubarak HA, Saleh SM. Effect of fluoride on rat cerebellar cortex: light and electron microscopic studies. Egypt J Histol. 2010;33:245–246.
  • Smd H. Neurohistological effects of lead on pons of adult albino rat. GJRA. 2015;4:452–453.
  • Eluwa M, Inyangmme I, Akpantah A, et al. A comparative study of the effect of diet and soda carbonated drinks on the histology of the cerebellum of adult female albino Wistar rats. Afr Health Sci. 2013;13(3):541–545. doi:10.4314/ahs.v13i3.1.
  • Der Perng M, Su M, Wen SF, et al. The Alexander disease–causing glial fibrillary acidic protein mutant, R416W, accumulates into rosenthal fibers by a pathway that involves filament aggregation and the association of αB-crystallin and HSP27. Am J Hum Genet. 2006;79(2):197–213. doi:10.1086/504411.
  • Bignami A, Dah D, Ruege D. Glial fibfillaryacidic(GFAP) protein in normal neural cells and in pathological conditions. Federof S, Hertz L, eds. Advances in Cellular Neurobiology. Vol. 1. New York: AcademicPress. 1980; 285–310.
  • El-Akabawy G, El-Kholy W. Neuroprotective effect of ginger in the brain of streptozotocin-induced diabetic rats. Ann Anat. 2014;196(2–3):119–128. doi:10.1016/j.aanat.2014.01.003.
  • Cerebellar Astrocytes CV. Much More Than Passive Bystanders In Ataxia Pathophysiology. J Clin Med. 2020;9(3):757. doi:10.3390/jcm9030757.
  • Jung SH, Lee S-T, Chu K, et al. Cell proliferation and synaptogenesis in the cerebellum after focal cerebral ischemia. Brain Res. 2009;1284:180–190. doi:10.1016/j.brainres.2009.05.051.
  • Grillo C, Piroli G, Wood G, Reznikov L, McEwen B, Reagan L. Immunocytochemical analysis of synaptic proteins provides new insights into diabetes-mediated plasticity in the rat hippocampus. Neuroscience. 2005;136(2):477–486. doi:10.1016/j.neuroscience.2005.08.019.
  • Ozdemir NG, Akbas F, Kotil T, Yılmaz A. Analysis of diabetes related cerebellar changes in streptozotocin-induced diabetic rats. Turk J Med Sci. 2016;46(5):1579–1592. doi:10.3906/sag-1412-125.
  • Emanuel R Essential Pathology. 3rd ed. Baltimore, MD (USA): Lippincot Williams & Wilkins; 2001. p. 1.
  • Gilloteaux J, Bouchat J, Brion J-P NC. The osmotic demyelination syndrome: the resilience of thalamic neurons is verified with transmission electron microscopy. Ultrastruct Pathol. 2020;44(4–6):450–480. doi:10.1080/01913123.2020.1853865.
  • Alvarez JI, Saint-Laurent O, Godschalk A, et al. Focal disturbances in the blood–brain barrier are associated with formation of neuroinflammatory lesions. Neurobiol Dis. 2015;74:14–24. doi:10.1016/j.nbd.2014.09.016.
  • Alvarez JI, Cayrol R, Prat A. Disruption of central nervous system barriers in multiple sclerosis. Biochimica Et Biophysica Acta (BBA)-mol Basis Disease. 2011;1812(2):252–264. doi:10.1016/j.bbadis.2010.06.017.
  • Brosnan CF, Raine CS. The astrocyte in multiple sclerosis revisited. Glia. 2013;61(4):453–465. doi:10.1002/glia.22443.
  • Brambilla R. The contribution of astrocytes to the neuroinflammatory response in multiple sclerosis and experimental autoimmune encephalomyelitis. Acta Neuropathol. 2019;137(5):757–783. doi:10.1007/s00401-019-01980-7.
  • Hawkins BT, Egleton RD. Pathophysiology of the blood–brain barrier: animal models and methods. Curr Top Dev Biol. 2007;80:277–309.
  • Wang Y, Shou Z, Fan H, et al. Protective effects of oxymatrine against DSS-induced acute intestinal inflammation in mice via blocking the RhoA/ROCK signaling pathway. Biosci Rep. 2019;39(7):7. doi:10.1042/BSR20182297.
  • Li M, Zhang X, Cui L, et al. The neuroprotection of oxymatrine in cerebral ischemia/reperfusion is related to nuclear factor erythroid 2-related factor 2 (nrf2)-mediated antioxidant response: role of nrf2 and hemeoxygenase-1 expression. Biol Pharm Bull. 2011;34(5):595–601. doi:10.1248/bpb.34.595.
  • Zhang W, Zhang J, Kang Y, et al. Cardioprotective effects of oxymatrine on isoproterenol-induced heart failure via regulation of DDAH/ADMA metabolism pathway in rats. Eur J Pharmacol. 2014;745:29–35. doi:10.1016/j.ejphar.2014.10.001.
  • Li L, Liu Q, Fan L, et al. Protective effects of oxymatrine against arsenic trioxide-induced liver injury. Oncotarget. 2017;8(8):12792. doi:10.18632/oncotarget.12478.
  • Jiang G, Liu X, Wang M, Chen H, Chen Z, Qiu T. Oxymatrine ameliorates renal ischemia-reperfusion injury from oxidative stress through Nrf2/HO-1 pathway. Acta Cir Bras. 2015;30(6):422–429. doi:10.1590/S0102-865020150060000008.
  • uang Y, Li X, Zhang X, Tang J. Oxymatrine Ameliorates Memory Impairment in Diabetic Rats by Regulating Oxidative Stress and Apoptosis: involvement of NOX2/NOX4. Oxid Med Cell Longev. 2020. Article ID 3912173, doi:10.1155/2020/3912173.
  • Hong‐li S, Lei L, Lei S, et al. Cardioprotective effects and underlying mechanisms of oxymatrine against Ischemic myocardial injuries of rats. Phytother Res. 2008;22(7):985–989. doi:10.1002/ptr.2452.
  • Zhao J, Yu S, Tong L, et al. Oxymatrine attenuates intestinal ischemia/reperfusion injury in rats. Surg Today. 2008;38(10):931–937. doi:10.1007/s00595-008-3785-8.
  • Dong P, Ji X, Han W, Han H. Oxymatrine attenuates amyloid beta 42 (Aβ1–42)-induced neurotoxicity in primary neuronal cells and memory impairment in rats. Can J Physiol Pharmacol. 2019;97(2):99–106. doi:10.1139/cjpp-2018-0299.
  • Fu Y, Hq W, Cui H, Yy L, Li C. Gastroprotective and anti‐ulcer effects of oxymatrine against several gastric ulcer models in rats: possible roles of antioxidant, antiinflammatory, and prosurvival mechanisms. Phytother Res. 2018;32(10):2047–2058. doi:10.1002/ptr.6148.
  • Zhang X, Jiang W, Zhou A-L, Zhao M, Jiang D-R. Inhibitory effect of oxymatrine on hepatocyte apoptosis via TLR4/PI3K/Akt/GSK-3β signaling pathway. World J Gastroenterol. 2017;23(21):3839. doi:10.3748/wjg.v23.i21.3839.
  • Liu Y, Wang H, Liu N, et al. Oxymatrine protects neonatal rat against hypoxic-ischemic brain damage via PI3K/Akt/GSK3β pathway. Life Sci. 2020;254:116444. doi:10.1016/j.lfs.2019.04.070.
  • Huang M, Hu -Y-Y, Dong X-Q, Xu Q-P, Yu W-H, Zhang Z-Y. The protective role of oxymatrine on neuronal cell apoptosis in the hemorrhagic rat brain. J Ethnopharmacol. 2012;143(1):228–235. doi:10.1016/j.jep.2012.06.028.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.