108
Views
0
CrossRef citations to date
0
Altmetric
Basic Research

Adverse neurological effects after exposure to copper, manganese, and mercury mixtures in a Spraque-Dawley rat model: an ultrastructural investigation

, , &
Pages 509-528 | Received 04 Aug 2023, Accepted 10 Oct 2023, Published online: 17 Oct 2023

References

  • Kierszenbaum AL, Tres L. Histology and Cell Biology: An Introduction to Pathology. 4th ed. Amsterdam, The Netherlands: Elsevier Saunders; 2016.
  • Jäkel S, Dimou L. Glial cells and their function in the adult brain: a journey through the history of their ablation. Front Cell Neurosci. 2017;11(24):1–17. doi:10.3389/fncel.2017.00024.
  • Garman RH. Histology of the central nervous system. Toxicol Pathol. 2011;39(1):22–35. doi:10.1177/0192623310389621.
  • Sofroniew MV, Vinters HV. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119(1):7–35. doi:10.1007/s00401-009-0619-8.
  • Kofler J, Wiley CA. Microglia: key innate immune cells of the brain. Toxicol Pathol. 2011;39(1):103–114. doi:10.1177/0192623310387619.
  • Graeber MB, Streit WJ. Microglia: biology and pathology. Acta Neuropathol. 2010;119(1):89–105. doi:10.1007/s00401-009-0622-0.
  • Scheiblich H, Trombly M, Ramirez A, Heneka MT. Neuroimmune connections in ging andneurodegenerative diseases. Trends Immunol. 2020;41(4):300–312. doi:10.1016/j.it.2020.02.002.
  • Dugger BN, Dickson DW. Pathology of neurodegenerative diseases. Cold Spring Harb Perspect Biol. 2017;9(7):1–47. doi:10.1101/cshperspect.a028035.
  • Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator inneurodegenerative diseases. Molecules. 2019;24(8):1583–1603. doi:10.3390/molecules24081583.
  • Tauffenberger A, Magistretti PJ. Reactive oxygen species: beyond their reactive behavior. Neurochem Res. 2021;46(1):77–87. doi:10.1007/s11064-020-03208-7.
  • Cicero CE, Mostile G, Vasta R, et al. Metals and neurodegenerative diseases: a systematic review. Environ Res. 2017;159:82–94. doi:10.1016/j.envres.2017.07.048.
  • Sahu C, Basti S. Trace metal pollution in the environment: a review. Int J Environ Sci Technol. 2021;18(1):211–224. doi:10.1007/s13762-020-02779-w.
  • El-Demerdash FM. Effects of selenium and mercury on the enzymatic activities and lipid peroxidation in brain, liver, and blood of rats. J Environ Sci Health. 2001;36(4):489–499. doi:10.1081/PFC-100104191.
  • Tchounwou PB, Yedjou CG, Patlolla AK, Sutton DJ. Heavy metals toxicity and the environment. Exp Suppl. 2012;101:133–164. doi:10.1007/978-3-7643-8340-4_6.
  • Wright RO, Baccarelli A. Metals and Neurotoxicology. J Nutri. 2007;137(12):2809–2813. doi:10.1093/jn/137.12.2809.
  • Mezzaroba L, Alfieri DF, Colado Simão AN, Vissoci Reiche EM. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology. 2019;74:230–241. doi:10.1016/j.neuro.2019.07.007.
  • Linder MC, Wooten L, Cerveza P, Cotton S, Shulze R, Lomeli N. Copper transport. Am Soc Clin Nutr. 1998;67(5):9655–9715. doi:10.1093/ajcn/67.5.965S.
  • Tarnacka B, Jopowicz A, Maślińska M. Copper, iron, and manganese toxicity in neuropsychiatric conditions. Int J Mol Sci. 2021;22(15):7820–7849. doi:10.3390/ijms22157820.
  • Gaetke LM, Chow CK. Copper toxicity, oxidative stress and antioxidant nutrients. Toxicology. 2003;189(1–2):147–163. doi:10.1016/S0300-483X(03)00159-8.
  • O’Neal SL, Lee JW, Zheng W, Cannon JR. Subacute manganese exposure in rats is aneurochemical model of early manganese toxicity. Neurotoxicology. 2014;44:303–313. doi:10.1016/j.neuro.2014.08.001.
  • Crossgrove J, Zheng W. Manganese toxicity upon overexposure. NMR Biomed. 2004;17(8):544–553. doi:10.1002/nbm.931.
  • Chandel M, Jain JC. Manganese-induced haematological alteration in Wistar rats. J Environ Occup Sci. 2016;5(4):77–81. doi:10.5455/jeos.20161126061501.
  • Borchard S, Bork F, Rieder T, et al. The exceptional sensitivity of brain mitochondria to copper. Toxicol In Vitro. 2018;51:11–22. doi:10.1016/j.tiv.2018.04.012.
  • Yang L, Zhang Y, Wang F, Luo Z, Guo S, Strähle U. Toxicity of mercury: molecular evidence. Chemosphere. 2020;245:125586–125700. doi:10.1016/j.chemosphere.2019.125586.
  • Caserta D, Graziano A, Lo Monte G, Bordi G, Moscarini M. Heavy metals and placental fetal-maternal barrier: a mini-review on the major concerns. Eur Rev Med Pharmacol Sci. 2013;17:2198–2206.
  • Park JD. Human exposure and health effects of inorganic and elemental mercury. J Prev Med Public Health. 2012;45:344–352. doi:10.3961/jpmph.2012.45.6.344.
  • Bjørklund G, Aaseth J, Ajsuvakova OP, et al. Molecular interaction between mercury and selenium in neurotoxicity. Coord Chem Rev. 2017;332:30–37. doi:10.1016/j.ccr.2016.10.009.
  • Yabe J, Ishizuka M, Umemura T. Current levels of heavy metal pollution in Africa. J Vet Med Sci. 2010;72(10):1257–1263. doi:10.1292/jvms.10-0058.
  • Wildemann TM, Weber LP, Siciliano SD. Combined exposure to lead, inorganic mercury and methylmercury shows deviation from additivity for cardiovascular toxicity in rats. J Appl Toxicol. 2015;35(8):918–926. doi:10.1002/jat.3092.
  • Kenston SSF, Su H, Li Z, et al. The systemic toxicity of heavy metal mixtures in rats. Toxicol Res. 2018;7(3):396–407. doi:10.1039/C7TX00260B.
  • Zhou F, Yin G, Gao Y, et al. Insights into cognitive deficits caused by low-dose toxic heavy metal mixtures and their remediation through a postnatal enriched environment in rats. J Hazard Mater. 2020;15:122081–122117. doi:10.1016/j.jhazmat.2020.122081.
  • Su H, Li Z, Kenston SSF, et al. Joint toxicity of different heavy metal mixtures after a short-term oral repeated-administration in rats. Int J Environ Res Public Health. 2017;14(10):1164–1182. doi:10.3390/ijerph14101164.
  • World Health Organisation: guidelines for drinking-water quality: fourth edition (2011). https://www.unicef.org/cholera/Chapter4prevention/01WHOGuidelinesfordrinkingwaterquality.pdf. Accessed May 5, 2018.
  • Venter C, Oberholzer HM, Cummings FR, Bester MJ. Effects of metals cadmium and chromium alone and in combination on the liver and kidney tissue of male spraque-Dawley rats: an ultrastructural and electron-energy-loss spectroscopy investigation. Microsc Res Tech. 2017;80(8):878–888. doi:10.1002/jemt.22877.
  • Naidoo SVK, Bester MJ, Arbi S, Venter C, Dhanraj P, Oberholzer HM. Oral exposure to cadmium and mercury alone and in combination causes damage to the lung tissue of Spraque-Dawley rats. Environ Toxicol Pharmacol. 2019;69:86–94. doi:10.1016/j.etap.2019.03.021.
  • Janse van Rensburg M, van Rooy M, Bester MJ, Serem JC, Venter C, Oberholzer HM. Oxidative and haemostatic effects of copper, manganese and mercury, alone and in combination at physiologically relevant levels: an ex vivo study. Human And Environmental Toxicology. 2019;38(4):419–433. doi:10.1177/0960327118818236.
  • Arbi S, Bester MJ, Pretorius L, Oberholzer HM. Adverse cardiovascular effects of exposure to cadmium and mercury alone and in combination on the cardiac tissue and aorta of Sprague–Dawley rats. J Environ Sci Health Part A. 2021;56(6):609–624. doi:10.1080/10934529.2021.1899534.
  • Nair AB, Jacob S. A simple practice guide for dose conversion between animals and human. JBCP. 2016;7(1):27–31. Sahu, C.; Basti, S. Trace metal pollution in the environment: a review. Int J Environ Sci Technol. 2021, 18, 211-224. doi:10.1007/s13762-020-02779-w.
  • Lattouf R, Younes R, Lutomski D, et al. Picrosirius red staining: a useful tool to appraise collagen networks in normal and pathological tissues. J Histochem Cytochem. 2014;62(10):751–758. doi:10.1369/0022155414545787.
  • Velindala S, Gaikwad P, Ella KKR, Bhorgonde KD, Hunsingi P, Anop K. Histochemical analysis of polarizing colours of collagen using picro sirius red staining in oral submucous fibrosis. J Oral Health. 2014;6:33–38.
  • Wells GA, Wells M. Neuropil vacuolation in brain: a reproducible histological processing artefact. J Comp Pathol. 1989 Nov;101(4):355–362. doi:10.1016/0021-9975(89)90018-2. PMID: 2691536.
  • Everds NE. The role of the toxicological pathologist in informing regulatory decisions and guiding the interpretation and application of data from new technologies and tools. Toxicol Pathol. 2015;43(1):90–97. doi:10.1177/0192623314555340.
  • Stremmel W, Merle U, Weiskirchen R. Clinical features of Wilson disease. Ann Trans Med. 2019;7(2):S61. Taber, K.H.; Hurley, R.A. Mercury exposure: effects across the lifespan. Clin Neurosci. 2008, 20, 384-389. doi:10.21037/atm.2019.01.20.
  • Monnot AD, Behl M, Ho S, Zheng W. Regulation of brain copper homeostasis by the brain barrier systems: effects of Fe-overload and Fe-deficiency. Toxicol Appl Pharmacol. 2011;256(3):249–257. doi:10.1016/j.taap.2011.02.003.
  • Charlet L, Chapron Y, Faller P, Kirsch R, Stone AT, Baveye PC. Neurodegenerative diseases and exposure to the environmental metals Mn, Pb, and Hg. Coord Chem Rev. 2012;256(19–20):2147–2163. doi:10.1016/j.ccr.2012.05.012.
  • Pal A, Badyal RK, Vasishta RK, Attri SV, Thapa BR, Prasad R. Biochemical, histological, and memory impairment effects of chronic copper toxicity: a model for non-Wilsonian brain copper toxicosis in Wistar rat. Biol Trace Elem Res. 2013;153(1–3):257–268. doi:10.1007/s12011-013-9665-0.
  • Fujiwara N, Iso H, Kitanaka N, et al. Effects of copper metabolism on neurological functions in Wistar and Wilson’s disease model rats. Biochem Biophys Res Commun. 2006;349(3):1079–1086. doi:10.1016/j.bbrc.2006.08.139.
  • Leiva J, Palestini M, Infante C, Goldschmidt A, Motles E. Copper suppresses hippocampus LTP in the rat, but does not alter learning or memory in the morris water maze. Brain Res. 2009;1256:69–75. doi:10.1016/j.brainres.2008.12.041.
  • Özcelik D, Uzun H. Copper intoxication; antioxidant defenses and oxidative damage in rat brain. Biol Trace Elem Res. 2009;127(1):45–52. doi:10.1007/s12011-008-8219-3.
  • Desai V, Kaler SG. Role of copper in human neurological disorders. Am J Clin Nutri. 2008;88(3):855–858. doi:10.1093/ajcn/88.3.855S.
  • Monnot AD, Behl M, Ho S, Zheng W. Regulation of brain copper homeostasis by the brain barrier systems: effects of Fe-overload and Fe-deficiency. Toxicol Appl Pharmacol. 2011;256:249–257. doi:10.1016/j.taap.2011.02.003.
  • Dusek P, Roos PM, Litwin T, Schneider SA, Flaten TP, Aaseth J. The neurotoxicity of iron, copper and manganese in Parkinson’s and Wilson’s diseases. J Trace Elem Med Biol. 2015;31:193–203. doi:10.1016/j.jtemb.2014.05.007.
  • Charlet L, Chapron Y, Faller P, Kirsch R, Stone AT, Baveye PC. Neurodegenerative diseases and exposure to the environmental metals Mn, Pb, and Hg. Coord Chem Rev. 2012;256(19–20):2147–2163. doi:10.1016/j.ccr.2012.05.012.
  • Xu F, Farkas S, Kortbeek S, et al. Mercury-induced toxicity of rat cortical neurons is mediated through N-Methyl-D-Aspartate receptors. Mol Brain. 2012;5(1):30–64. doi:10.1186/1756-6606-5-30.
  • O’Donoghue JL, Watson GE, Brewer R, et al. Neuropathology associated with exposure to different concentrations and species of mercury: a review of autopsy cases and the literature. Neurotoxicol. 2020;78:88–98. doi:10.1016/j.neuro.2020.02.011.
  • Farina M, Avila DS, da Rocha JB, Aschner M. Metals, oxidative stress and neurodegeneration: a focus on iron, manganese and mercury. Neurochem Int. 2013;62(5):575–594. doi:10.1016/j.neuint.2012.12.006.
  • Glickstein M, Doron K. Cerebellum: connections and functions. Cerebellum. 2008;7:589–594. doi:10.1007/s12311-008-0074-4.
  • Kemp KC, Cook AJ, Redondo J, Kurian KM, Scolding NJ, Wilkins A. Purkinje cell injury,structural plasticity and fusion in patients with Friedreich’s ataxia. Acta Neuropathol Commun. 2016;4(1):53–68. doi:10.1186/s40478-016-0326-3.
  • Björklund E, Lindberg E, Rundgren M, Cronberg T, Friberg H, Englund E. Ischaemic brain damage after cardiac arrest and induced hypothermia - a systematic description of selective eosinophilic neuronal death: a neuropathologic study of 23 patients. Resuscitation. 2014;85(4):527–532. doi:10.1016/j.resuscitation.2013.11.022.
  • Khadrawy YA, Salem AM, El-Shamy KA, Ahmed EK, Fadl NN, Hosny EN. Neuroprotective and therapeutic effect of caffeine on the rat model of parkinson’s disease induced by rotenone. J Diet Suppl. 2017;14(5):553–572. doi:10.1080/19390211.2016.1275916.
  • Afifi OK, Embaby AS. Histological study on the protective role of ascorbic acid on cadmium induced cerebral cortical neurotoxicity in adult male albino rats. J Micros Ultrastruct. 2016;4(1):36–45. doi:10.1016/j.jmau.2015.10.001.
  • El-Drieny EAEA, Sarhan NI, Bayomy NA, Elsherbeni SAE, Momtaz R, Mohamed HE. Histological and immunohistochemical study of the effect of gold nanoparticles on the brain of adult male albino rat. J Micros Ultrastruct. 2015;3(4):181–190. doi:10.1016/j.jmau.2015.05.001.
  • Arnal N, Morel GR, de Alaniz MJ, Castillo O, Marra CA. Role of copper and cholesterol association in the neurodegenerative process. Int J Alzheimers Dis. 2013;2013:1–41. doi:10.1155/2013/414817.
  • Chen P, Miah MR, Aschner M. Metals and neurodegeneration. F1000res. 2016;5:1–42. doi:10.12688/f1000research.7431.1.
  • Duncan ID, Radcliff AB. Inherited and acquired disorders of myelin: the underlying myelin pathology. Exp Neuro. 2016;283:452–475. doi:10.1016/j.expneurol.2016.04.002.
  • Bradl M, Lassmann H. Oligodendrocytes: biology and pathology. Acta Neuropathol. 2010;119:37–53. doi:10.1007/s00401-009-0601-5.
  • Tassabehji NM, Van Landingham JW, Levenson CW. Copper alters the conformation and transcriptional activity of the tumor suppressor protein p53 in human hep G2 cells. Exp Biol Med. 2005;230(10):699–708. doi:10.1177/153537020523001002.
  • Zhao XY, Lu MH, Yuan DJ, et al. Mitochondrial dysfunction in neural injury. Front Neurosci. 2019;13:30–44. doi:10.3389/fnins.2019.00030.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.