65
Views
0
CrossRef citations to date
0
Altmetric
Basic Research

The potential therapeutic effects of exosomes derived from bone marrow mesenchymal stem cells on ileum injury of a rat sepsis model (histological and immunohistochemical study)

ORCID Icon, ORCID Icon & ORCID Icon
Pages 274-296 | Received 01 Feb 2024, Accepted 11 Jun 2024, Published online: 01 Jul 2024

References

  • Fang H, Gong C, Fu J, Liu X, Bi H, Cheng Y, et al. Evaluation of 2 rat models for sepsis developed by improved cecal ligation/puncture or feces intraperitoneal-injection. Med Sci Monit. January 29, 2020;26:E919054. doi:10.12659/MSM.919054. PMID: 31992687; PMCID: PMC7001512. n.d.
  • Cherkasova MN. Experimental modeling of sepsis. Biol Bull Rev. 2021;11(Suppl 1):65–77. doi:10.1134/S2079086421070033.
  • Huang M, Cai S, Su J. The pathogenesis of sepsis and potential therapeutic targets. Int J Mol Sci. 2019;20(21):5376. doi:10.3390/ijms20215376.
  • ‏Alsharif KF, Almalki AA, Al-Amer O, Mufti AH, Theyab A, Lokman MS, et al. Oleuropein protects against lipopolysaccharide-induced sepsis and alleviates inflammatory responses in mice. IUBMB Life. October, 2020;72(10):2121–2132. doi: 10.1002/iub.2347. Epub 2020 Jul 25. PMID: 32710811.
  • Li L, He X, Wang X, Sun Y, Wu G, Fang H, et al. Ruxolitinib protects lipopolysaccharide (LPS)-induced sepsis through inhibition of nitric oxide production in mice. Ann Transl Med. April, 2020;8(8):546. doi: 10.21037/atm-20-2972.
  • Meng Z, Liao Y, Peng Z, Zhou X, Zhou H, Nüssler AK, et al. Bone marrow mesenchymal stem-cell-derived exosomes ameliorate deoxynivalenol-induced mice liver damage. Antioxidants. 2023;12(3):588. doi:10.3390/antiox12030588.
  • Joo HS, Suh JH, Lee HJ, Bang ES, Lee JM. Current knowledge and future perspectives on mesenchymal stem cell-derived exosomes as a new therapeutic agent. Int J Mol Sci. January 22, 2020;21(3):727. doi: 10.3390/ijms21030727. PMID: 31979113; PMCID: PMC7036914.
  • Liu AC, Patel K, Vunikili RD, Johnson KW, Abdu F, Belman SK, et al. Sepsis in the era of data-driven medicine: personalizing risks, diagnoses, treatments and prognoses. Brief Bioinform. 2020;21:1182–1195. doi: 10.1093/bib/bbz059.
  • McDaniel JS, Antebi B, Pilia M, Hurtgen BJ, Belenkiy S, Necsoiu C, et al. Quantitative assessment of optimal bone marrow site for the isolation of porcine mesenchymal stem cells. Stem Cells Int. 2017:1836960. doi: 10.1155/2017/1836960.
  • Schachtele S, Clouser C, Aho J. Markers and Methods to Verify Mesenchymal Stem Cell Identity, Potency, and Quality. Bio-techne; 2020.
  • Ghazanfari R, Zacharaki D, Li H, Ching Lim H, Soneji S, Scheding S. Human primary bone marrow mesenchymal stromal cells and their in vitro progenies display distinct transcriptional profile signatures. Sci Rep. 2017;7(1):10338. doi:10.1038/s41598-017-09449-x.
  • Huang S, Xu L, Sun Y, Wu T, Wang K, Li G. An improved protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. J Orthop Translat. 2015;3(1):26–33. doi: 10.1016/j.jot.2014.07.005.
  • Lan YW, Choo KB, Chen CM, Hung TH, Chen YB, Hsieh CH, et al. Hypoxia-preconditioned mesenchymal stem cells attenuate bleomycin-induced pulmonary fibrosis. Stem Cell Res Ther. May 20, 2015;6(1):97. doi: 10.1186/s13287-015-0081-6. PMID: 25986930; PMCID: PMC4487587.
  • Wallace PK, Jd Jr T, Fisher JL, Wallace SS, Ernstoff MS, Muirhead KA. Tracking antigen-driven responses by flow cytometry: monitoring proliferation by dye dilution. Cytometry A. November, 2008;73(11):1019–1034. doi: 10.1002/cyto.a.20619. PMID: 18785636.
  • Lai CP, Kim EY, Badr CE, Weissleder R, Mempel TR, Tannous BA, et al. Visualization and tracking of tumour extracellular vesicle delivery and RNA translation using multiplexed reporters. Nat Commun. May 13, 2015;6:7029. doi: 10.1038/ncomms8029. PMID: 25967391; PMCID: PMC4435621.
  • Tang XD, Shi L, Monsel A, Li XY, Zhu HL, Zhu YG, et al. Mesenchymal stem cell microvesicles attenuate acute lung injury in mice partly mediated by Ang-1 mRNA. Stem Cells. 2017;35(7):1849–1859. doi: 10.1002/stem.2619.
  • Mohammadi MR, Riazifar M, Pone EJ, Yeri A, Van Keuren-Jensen K, Lässer C, et al. Isolation and characterization of microvesicles from mesenchymal stem cells. Methods. 2020;177:50–57. doi: 10.1016/j.ymeth.2019.10.010.
  • Herrera MB, Fonsato V, Gatti S, Deregibus MC, Sordi A, Cantarella D, et al. Human liver stem cell-derived microvesicles accelerate hepatic regeneration in hepatectomized rats. J Cell Mol Med. June, 2010;14(6B):1605–1618. doi: 10.1111/j.1582-4934.2009.00860.x. Epub 2009 Jul 24. PMID: 19650833; PMCID: PMC3060338.
  • Li P, Zhang R, Sun H, Chen L, Liu F, Yao C, et al. PKH26 can transfer to host cells in vitro and vivo. Stem Cells Dev. 2013;22(2):340–344. doi: 10.1089/scd.2012.0357.
  • Sabry D, Mohamed A, Monir M, Ibrahim HA. The effect of mesenchymal stem cells derived microvesicles on the treatment of experimental CCL4 induced liver fibrosis in rats. Int J Stem Cells. November 30, 2019;12(3):400–409. doi: 10.15283/ijsc18143. PMID: 31474025; PMCID: PMC6881047.
  • Monsel A, Zhu Y, Gennai S, Hao Q, Hu S, Rouby J, et al. Therapeutic Effects of human mesenchymal stem cell–derived microvesicles in severe pneumonia in mice in. Am J Respiratory And Crit Care Med. 2015;192(3):324–336. doi: 10.1164/rccm.201410-1765OC.
  • Su Y, Song X, Teng J, Zhou X, Dong Z, Li P, et al. Mesenchymal stem cells-derived extracellular vesicles carrying microRNA-17 inhibits macrophage apoptosis in lipopolysaccharide-induced sepsi. Int Immunopharmacol. 2021;95:10740. doi: 10.1016/j.intimp.2021.107408.
  • Yoshino Y, Jesmin S. Islam M Landiolol hydrochloride ameliorates liver injury in a rat sepsis model by down regulating hepatic TNF-a. J Vasc Med Surg. 2015;3(2):1–5.
  • Omar A, Aboulkhair A. Do microvesicles derived from adipose mesenchymal stem cells have a therapeutic potential on Escherichia coli lipopolysaccharides-induced sepsis in Zona fasciculata of adult male albino rats? A histological study. Egypt J Histol. 2018;41(2):204–219. doi:10.21608/EJH.2018.13843.
  • Bancroft J, Layton C. Hematoxylin, and eosin. In: Suvarna S, Layton C Bancroft J, eds. Theory and Practice of Histological Techniques, Ch. 10 and 11, 7th ed. Philadelphia: Churchill Livingstone of Elsevier; 2013:pp. 172–214.
  • Bancroft J, Gamble M, eds. Theory and Practice of Histological Techniques. 7th ed. New York, Edinburgh, London: Churchill Livingston; 2013:165–175.
  • Zeilstra J, Joosten SPJ, Vermeulen L, Koster J, Medema JP, Versteeg R, et al. CD44 Expression in Intestinal Epithelium and Colorectal Cancer Is Independent of p53 Status. PLOS ONE. 2013;8(8):e72849. doi: 10.1371/journal.pone.0072849.
  • Abdel-Wahab BA, Alkahtani SA, Alqahtani AA, Hassanein EHM. Umbelliferone ameliorates ulcerative colitis induced by acetic acid via modulation of TLR4/NF-κB-p65/iNOS and SIRT1/PPARγ signaling pathways in rats. Environ Sci Pollut Res Int. May, 2022;29(25):37644–37659. doi: 10.1007/s11356-021-18252-1. Epub 2022 Jan 23. Erratum in: Environ Sci Pollut Res Int. 2023 Mar;30(11):32117-32118. PMID: 35066822.
  • Ramos-Vara JA, Kiupel M, Baszler T, Bliven L, Brodersen B, Chelack B, et al. Suggested guidelines for immunohistochemical techniques in veterinary diagnostic laboratories. J Vet Diagn Invest. 2008;20(4):393–413. doi: 10.1177/104063870802000401.
  • Woods A, Stirling J. Electron Microscopy: the preparative techniques. In: Bancroft J Gamble M, eds. Theory and Practice of Histological Techniques. 5th ed. New York, Edinburgh, London: Churchill Livingston; 2002:pp. 682–700.
  • Abdel Mohsen AF, Salama NM, Rashed LA, Farag EA, Abdel Hameed AM. A Comparative Histological Study on the Effect of Adipose- Derived Stem Cells versus Their Conditioned Medium on Indomethacin Induced Enteritis in Adult Female Albino Rats. Egypt J Histol. 2018;41(4):503–519. doi: 10.21608/ejh.2018.29264.
  • Cui YM, Wang J, Lu W, Zhang HJ, Wu SG, Qi GH. Effect of dietary supplementation with Moringa oleifera leaf on performance, meat quality, and oxidative stability of meat in broilers. Poult Sci. August 1, 2018;97(8):2836–2844. doi: 10.3382/ps/pey122. PMID: 29660045.
  • Xie J, Wang H, Kang Y, Zhou L, Liu Z, Qin B, et al. The Epidemiology of Sepsis in Chinese ICUs: A National Cross-Sectional Survey. Crit Care Med. 2020;48(3):e209–e218. doi: 10.1097/CCM.0000000000004155.
  • Liu Z, Chen X, Ma W, Gao Y, Yao Y, Li J, et al. Suppression of Lipopolysaccharide-Induced Sepsis by Tetrahedral Framework Nucleic Acid Loaded with Quercetin. Adv Funct Mater. 2022;32(43):2204587. doi: 10.1002/adfm.202204587.
  • Li C, Ma D, Zhang M, An L, Wu C, Zhou H. Effects of Long-time Exposure to Lipopolysaccharide on Intestinal Lymph Node Immune Cells and Antibodies Level in Mice. Iran J Immunol. September, 2020;17(3):175–184. doi: 10.22034/iji.2020.86313.1750. PMID: 32996895.
  • Ayyar Kanchana K. Moss Alan C, Exosomes in Intestinal Inflammation. Front Pharmacol. 2021;12: doi: 10.3389/fphar.2021.658505.
  • Mohammad S, Timmerman C. Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions Frontiers inImmunology. Front Immunol. 2021;11: https://www.frontiersin.org/articles/10.3389/fimmu.2020.594150.DOI=10.3389/fimmu.2020.59415
  • Eshghi F, Tahmasebi S, Alimohammadi M, Soudi S, Ghaffari Khaligh S, Khosrojerdi A, et al. Study of immunomodulatory effects of mesenchymal stem cell-derived exosomes in a mouse model of LPS induced systemic inflammation. Life Sci. 2022;310:120938. doi: 10.1016/j.lfs.2022.120938.
  • Larabi A, Barnich N, Nguyen HTT. Emerging Role of Exosomes in Diagnosis and Treatment of Infectious and Inflammatory Bowel Diseases. Cells. 2020;9(5):1111. doi: 10.3390/cells9051111.
  • Chang Y, Yuan L, Liu J, Muhammad I, Cao C, Shi C, et al. Dihydromyricetin attenuates Escherichia coli lipopolysaccharide-induced ileum injury in chickens by inhibiting NLRP3 inflammasome and TLR4/NF-κB signalling pathway. Vet Res. 2020;51(1):72. doi: 10.1186/s13567-020-00796-8.
  • Miao H, Chen S, Ding R. Evaluation of the molecular mechanisms of sepsis using proteomics. Front Immunol. 2021;12:733537. doi: 10.3389/fimmu.2021.733537.
  • Onodera Y, Teramura T, Takehara T, Shigi K, Fukuda K. Reactive oxygen species induce Cox-2 expression via TAK1 activation in synovial fibroblast cells. FEBS Open Bio. 2015;5(1):492–501. doi: 10.1016/j.fob.2015.06.001.
  • Liu Q, Molkentin JD. Protein kinase Cα as a heart failure therapeutic target. J Mol Cell Cardiol. 2011;51(4):474–478. doi: 10.1016/jyjmcc.2010.10.004.
  • Huang WC, Chen JJ, Inoue H, Chen CC. Tyrosine phosphorylation of I-κB kinase α/β by protein kinase C-dependent c-Src activation is involved in TNF-α-induced cyclooxygenase-2 expression. J Immunol. 2003;170(9):4767–4775. doi: 10.4049/jimmunol.170.9.4767.
  • Tseng HC, Lin CC, Hsiao LD, Yang CM. Lysophosphatidylcholine- induced mitochondrial fission contributes to collagen production in human cardiac fibroblasts. J Lipid Res. 2019;60(9):1573–1589. doi: 10.1194/jlr.RA119000141.
  • Kitanaka T, Nakano R, Kitanaka N, Kimura T, Okabayashi K, Narita T, et al. JNK activation is essential for activation of MEK/ERK signaling in IL-1β-induced COX-2 expression in synovial fibroblasts. Sci Rep. 2017;7(1):39914. doi: 10.1038/srep39914.
  • Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol. 2003;3(9):745–756. doi:10.1038/nri1184.
  • Li YY, Feng YQ, Kadokami T, McTiernan CF, Draviam R, Watkins SC, et al. Myocardial extracellular matrix remodeling in transgenic mice overexpressing tumor necrosis factor α can be modulated by anti-tumor necrosis factor α therapy. Proc Natl Acad Sci U S A. 2000;97(23):12746–12751. doi: 10.1073/pnas.97.23.12746.
  • Chen X, Subleski JJ, Kopf H, Howard OMZ, Männel DN, Oppenheim JJ. Cutting edge: expression of TNFR2 defines a maximally suppressive subset of mouse CD4+ CD25+ FoxP3+ T regulatory cells: applicability to tumor-infiltrating T regulatory cells. J Immunol. 2008;180(10):6467–6471. doi: 10.4049/jimmunol.180.10.6467.
  • Giroux M, Descoteaux A. Cyclooxygenase-2 expression in macrophages: modulation by protein kinase C-α. J Immunol. 2000;165(7):3985–3991. doi: 10.4049/jimmunol.165.7.3985.
  • Wu C, Li H, Zhang P, Tian C, Luo J, Zhang W, et al. Lymphatic flow: a potential target in sepsis-associated acute lung injury. J Inflamm Res. November 23, 2020;13:961–968. doi: 10.2147/JIR.S284090. PMID: 33262632; PMCID: PMC7695606.
  • Zhiping X, Lujie L, Xun P, Wanjing S, Yuyue J, Shang-Tian Y, et al. A potential probiotic for diarrhea: clostridium tyrobutyricum protects against LPS-induced epithelial dysfunction via IL-22 produced by Th17 cells in the ileum. Front Immunol. 2021. VOL12 12: doi: 10.3389/fimmu.2021.758227.
  • Bao W, Xing H, Cao S, Long X, Liu H, Ma J, et al. Neutrophils restrain sepsis associated coagulopathy via extracellular vesicles carrying superoxide dismutase 2 in a murine model of lipopolysaccharide induced sepsis. Nat Commun. August 6, 2022;13(1):4583. doi: 10.1038/s41467-022-32325-w. PMID: 35933512; PMCID: PMC9357088.
  • Hu X, Xu Q, Wan H, Hu Y, Xing S, Yang H, et al. PI3K-Akt-mTOR/PFKFB3 pathway mediated lung fibroblast aerobic glycolysis and collagen synthesis in lipopolysaccharide-induced pulmonary fibrosis. Lab Invest. June, 2020;100(6):801–811. doi: 10.1038/s41374-020-0404-9. Epub 2020 Feb 12. PMID: 32051533.
  • Huang S, Zhang S, Chen L, Pan X, Wen Z, Chen Y, et al. Lipopolysaccharide induced intestinal epithelial injury: a novel organoids-based model for sepsis in vitro. Chin Med J (Engl). September 20, 2022;135(18):2232–2239. doi: 10.1097/CM9.0000000000002348.
  • Castellano G, Stasi A, Franzin R, Sallustio F, Divella C, Spinelli A, et al. LPS-Binding Protein Modulates Acute Renal Fibrosis by Inducing Pericyte-to-Myofibroblast Trans-Differentiation through TLR-4 Signaling. Int J Mol Sci. July 27, 2019;20(15):3682. doi: 10.3390/ijms20153682. PMID: 31357597; PMCID: PMC6696277.
  • Pérez-Hernández EG, Delgado-Coello B, Luna-Reyes I, Mas-Oliva J. New insights into lipopolysaccharide inactivation mechanisms in sepsis. Biomed Pharmacother. September, 2021;141:111890. doi: 10.1016/j.biopha.2021.111890. Epub 2021 Jul 3. PMID: 34229252.
  • Zhou L, Hao Q, Sugita S, Naito Y, He H, Yeh CC, et al. Role of CD44 in increasing the potency of mesenchymal stem cell extracellular vesicles by hyaluronic acid in severe pneumonia. Stem Cell Res Ther. May 20, 2021;12(1):293. doi: 10.1186/s13287-021-02329-2. PMID: 34016170; PMCID: PMC8136222.
  • Ouhtit A, Thouta R, Zayed H, Gaur RL, Fernando A, Rahman M, et al. CD44 mediates stem cell mobilization to damaged lung via its novel transcriptional targets, Cortactin and Survivin. Int J Med Sci. January 1, 2020;17(1):103–111. doi: 10.7150/ijms.33125.
  • Webber RJ, Sweet RM, Webber DS. Circulating microvesicle-associated inducible nitric oxide synthase is a novel therapeutic target to treat sepsis: current status and future considerations. Int J Mol Sci. December 13, 2021;22(24):13371.\. doi: 10.3390/ijms222413371.
  • Andrade JABD, Freymüller E, Fagundes-Neto U. Pathophysiology of enteroaggregative Escherichia coli infection: an experimental model utilizing transmission electron microscopy. Arq Gastroenterol. 2010;47(3):306–312.‏ doi: 10.1590/S0004-28032010000300018.
  • Khan MM, Yang WL, Wang P. Endoplasmic Reticulum Stress in Sepsis. Shock. 2015;44(4):294–304. doi: 10.1097/SHK.0000000000000425.
  • Jiao G, Hao L, Wang M, Zhong B, Yu M, Zhao S, et al. Upregulation of endoplasmic reticulum stress is associated with diaphragm contractile dysfunction in a rat model of sepsis. Mol Med Rep. 2017;15(1):366–374. doi: 10.3892/mmr.2016.6014.
  • Nedel W, Deutschendorf C, Portela LVC. Sepsis-induced mitochondrial dysfunction: A narrative review. World J Crit Care Med. June 9, 2023;12(3):139–152. doi: 10.5492/wjccm.v12.i3.139. PMID: 37397587; PMCID: PMC10308342.
  • Mohsen A, Abeer F, Salama NM, Rashed LA, Farag EA, Asmaa M, Abdel Hameed AM. A Comparative Histological Study on the Effect of Adipose- Derived Stem Cells versus Their Conditioned Medium on IndomethacinInduced Enteritis in Adult Female Albino Rats. Egypt J Histol 2018. doi: 10.21608/ejh.2018.29264.
  • Li X, Zhang Y, Yeung SC, Liang Y, Liang X, Ding Y, et al. Mitochondrial Transfer of Induced Pluripotent Stem Cell–Derived Mesenchymal Stem Cells to Airway Epithelial Cells Attenuates Cigarette Smoke–Induced Damage. Am J Respir Cell Mol Biol. 2014;51(3):455–465. doi: 10.1165/rcmb.2013-0529OC.
  • Hotz MJ, Qing D, Shashaty MG, Zhang P, Faust H, Sondheimer N, et al. Red Blood Cells Homeostatically Bind Mitochondrial DNA through TLR9 to Maintain Quiescence and to Prevent Lung Injury.Am. J Respir Crit Care Med. 2018;197(4):470–480. doi: 10.1164/rccm.201706-1161OC.
  • Goncalves F, Luk F, Korevaar S, Bouzid R, Paz A, Lopez-Iglesias C, et al. Membrane particles generated from mesenchymal stromal cells modulate immune responses by selective targeting of pro-inflammatory monocytes. Sci Rep. 2017;7(1):12100. doi: 10.1038/s41598-017-12121-z.
  • Caruso S, Poon IKH. Apoptotic cell-derived extracellular vehicles: more than just debris. Front Immunol. 2018;9:1486. doi: 10.3389/fimmu.2018.01486.
  • Weiss DJ, English K, Krasnodembskaya A, Isaza- Correa J, Hawthorne IJ, Mahon BP. The necrobiology of mesenchymal stromal cells affects therapeutic efficacy. Front Immunol. 2019;10:1228. doi: 10.3389/fimmu.2019.01228.
  • Ren S, Chen J, Duscher D, Liu Y, Guo G, Kang Y, et al. Microvesicles from human adipose stem cells promote wound healing by optimizing cellular functions via AKT and ERK signaling pathways. Stem Cell Res Ther. 10, 2019;10(1):47. doi: 10.1186/s13287-019-1152-x.
  • Belvedere R, Pessolano E, Porta A, Tosco A, Parente L, Petrella F, et al. Mesoglycan induces the secretion of microvesicles by keratinocytes able to activate human fibroblasts and endothelial cells: A novel mechanism in skin wound healing. Eur J Pharmacol. 2020;869:172894. doi: 10.1016/j.ejphar.2019.172894.
  • Yan Y, Wu R, Bo Y, Zhang M, Chen Y, Wang X, et al. Induced pluripotent stem cells-derived microvesicles accelerate deep second-degree burn wound healing in mice through miR-16-5p-mediated promotion of keratinocytes migration. Theranostics. August 8, 2020;10(22):9970–9983. doi: 10.7150/thno.46639.
  • Abdelfattah S, Ali Metwally A, Nasr M. Silymarin chitosan-modified penetration enhancer microvesicles as a promising wound healing tool. J Drug Delivery Sci Technol. 2023;84:104430. doi: 10.1016/j.jddst.2023.104430.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.