2,387
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Cedrus atlantica pollen morphology and investigation of grain size variability using laser diffraction granulometry

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Altuner EM, Çeter T, Alpas H. 2012. High hydrostatic pressure processing: a method having high success potential in pollen protein extraction. High Pressure Research 32:291–298.
  • Amundson R, Evett RR, Jahren AH, Bartolome J. 1997. Stable carbon isotope composition of Poaceae pollen and its potential in paleovegetational reconstructions. Review of Palaeobotany and Palynology 99:17–24.
  • Andersen ST. 1960. Silicone oil as a mounting medium for Pollen Grains. Danmarks Geologiske undersøgelse 4:1–24.
  • Aytug B. 1960. Quelques mensurations des pollens de Pinus silvestris L. Pollen et Spores 2:305–309.
  • Aytug B. 1961. Etude Des Pollens Du Genre Cedre (Cedrus Link.). Pollen et spores 3:47–54.
  • Bell BA, Fletcher WJ. 2016. Modern surface pollen assemblages from the Middle and High Atlas, Morocco: insights into pollen representation and transport. Grana 55:286–301.
  • Bell BA, Fletcher WJ, Ryan P, Grant H, Ilmen R. 2017. Stable carbon isotope analysis of Cedrus atlantica pollen as an indicator of moisture availability. Review of Palaeobotany and Palynology 244:128–139.
  • Bell CR. 1959. Mineral nutrition and flower to flower pollen size variation. American Journal of Botany 46:621–624.
  • Bennett MD. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society B: Biological Sciences 181:109–135.
  • Bou Dagher-Kharrat M, Grenier G, Bariteau M, Brown S, Siljak-Yakovlev S, Savouré A. 2001. Karyotype analysis reveals interspecific differentiation in the genus Cedrus despite genome size and base composition constancy. Theoretical and Applied Genetics 103:846–854.
  • Bragg LH. 1969. Pollen size variation in selected grass taxa. Ecology 50:124–127.
  • Brown HM, Irving KR. 1973. The size and weight of common allergenic pollens. Allergy 28:132–137.
  • Brown TA, Nelson ED, Mathewes RW, Vogel JS, Southon JR. 1989. Radiocarbon dating of pollen by accelerator mass spectrometry. Quaternary Research 32:205–212.
  • Bunderson LD, Levetin E. 2015. Hygroscopic weight gain of pollen grains from Juniperus species. International Journal of Biometeorology 59:533–540.
  • Charman DJ. 1992. The effects of acetylation on fossil Pinus pollen and Sphagnum spores discovered during routine pollen analysis. Review of Palaeobotany and Palynology 72:159–164.
  • Cheddadi R, Fady B, François L, Hajar L, Suc JP, Huang K, Demarteau M, Vendramin GG, Ortu E. 2009. Putative glacial refugia of Cedrus atlantica deduced from Quaternary pollen records and modern genetic diversity. Journal of Biogeography 36:1361–1371.
  • Clausen KE. 1962. Size variation in pollen of three taxa of Betula. Pollen et Spores 4:169–174.
  • Chissoe WF, Vezey EL, Skvarla JJ. 1994. Hexamethyldisilazane as a drying agent for pollen scanning electron microscopy. Biotechnic & Histochemistry 69:192–198.
  • Cruden RW. 2000. Pollen grains: Why so many? Plant Systematics and Evolution 222:143–165.
  • Cruzan MB. 1990. Variation in pollen size, fertilization ability, and postfertilization siring ability in erythronium grandiflorum. Evolution 44:843–856.
  • Cushing EJ. 1961. Size increase in pollen grains mounted in thin slides. Pollen et Spores 3:265–274.
  • Dai A. 2011. Characteristics and trends in various forms of the palmer drought severity index during 1900–2008. Journal of Geophysical Research Atmospheres 116.
  • De Storme N, Zamariola L, Mau M, Sharbel TF, Geelen D. 2013. Volume-based pollen size analysis: an advanced method to assess somatic and gametophytic ploidy in flowering plants. Plant Reproduction 26:65–81.
  • Derridj A, Cadeac F, Durrieu G. 1991. Etude de la variabilité géographique des dimensions des pollens du cèdre de l'Atlas (Cedrus atlantica Manetti) en Algérie. Bulletin de la Société Botanique de France. Lettres Botanique 138:215–230.
  • Desprat S, Diaz Fernandez PM, Coulon T, Ezzat L, Pessarossi-Langlois J, Gil L, Morales-Molino C, Sanchez Goni MF. 2015. Pinus nigra (European black pine) as the dominant species of the last glacial pinewoods in south-western to central Iberia: A morphological study of modern and fossil pollen. Journal of Biogeography 42:1998–2009.
  • Dyer RJ, Pellicer J, Savolainen V, Leitch IJ, Schneider H. 2013. Genome size expansion and the relationship between nuclear DNA content and spore size in the Asplenium monanthes fern complex (Aspleniaceae). BMC Plant Biology 13:219.
  • Ejsmond MJ, Ejsmond A, Banasiak Ł, Karpińska-Kołaczek M, Kozłowski J, Kołaczek P. 2015. Large pollen at high temperature: an adaptation to increased competition on the stigma? Plant Ecology 216:1407–1417.
  • Ejsmond MJ, Wrońska-Pilarek D, Ejsmond A, Dragosz-Kluska D, Karpińska-Kołaczek M, Kołaczek P, Kozłowski J. 2011. Does climate affect pollen morphology? Optimal size and shape of pollen grains under various desiccation intensity. Ecosphere 2:1–15.
  • Erdtman G. 1943. An introduction to pollen analysis. Massachusetts: The Chronica Botanica Company.
  • Faegri K, Deuse P. 1960. Size variations in pollen grains with different treatment. Pollen et spores 2:293–298.
  • Farjon A. 1990. Pinaceae: drawings and descriptions of the genera Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. Konigstein: Koeltz Scientific Books.
  • Fraser WT, Sephton MA, Watson JS, Self S, Lomax BH, James DI, Wellman CH, Callaghan TV, Beerling, DJ. 2011. UV-B absorbing pigments in spores: Biochemical responses to shade in a high-latitude birch forest and implications for sporopollenin-based proxies of past environmental change. Polar Research 30:1.
  • Fujiki T, Inoue T, Yasuda Y. 2003. Pollen morphology of Cedrus. Japanese Journal of Palynology 49:21–24.
  • Gould FW. 1957. Pollen size as related to polyploidy and speciation in the andropogon saccharoides-A. Barbinodis Complex. Brittonia 9:71–75.
  • Griener KW, Nelson DM, Warny S. 2013. Declining moisture availability on the Antarctic Peninsula during the Late Eocene. Palaeogeography Palaeoclimatology Palaeoecology 383–384:72–78.
  • Griener KW, Warny S. 2015. Nothofagus pollen grain size as a proxy for long-term climate change: an applied study on Eocene, Oligocene, and Miocene sediments from Antarctica. Review of Palaeobotany and Palynology 221:138–143.
  • Harris I, Jones PD, Osborn TJ, Lister DH. 2014. Updated high-resolution grids of monthly climatic observations - the CRU TS3.10 Dataset. International Journal of Climatology 34:623–642.
  • Hecht E. 2002. Optics. 4th ed. San Francisco: Addison-Wesley.
  • Heusser LE, Stock CE. 1984. Preparation techniques for concentrating pollen from marine sediments and other sediments with low pollen density. Palynology 8:225–227.
  • Ho R. 1972. Studies on pollen of selected species in Pinaceae. Vancouver: University of British Columbia.
  • Ilmen R, Sabir A, Benzyane M, Karrouk MS. 2014. Variability and dynamic response of the cedar to climate change in the Eastern Middle Atlas Mountains, Morocco. Moroccan Journal of Chemistry 2:512–516.
  • Jardine PE, Lomax BH. 2017. Is pollen size a robust proxy for moisture availability? Review of Palaeobotany and Palynology https://doi.org/10.1016/j.revpalbo.2017.06.013
  • Jardine PE, Abernethy FAJ, Lomax BH, Gosling WD, Fraser WT. 2017. Shedding light on sporopollenin chemistry, with reference to UV reconstructions. Review of Palaeobotany and Palynology 238:1–6.
  • Kapadia ZJ, Gould FW. 1964. Biosystematic Studies in the Bouteloua Curtipendula Complex. III. Pollen Size As Related To Chromosome Numbers. American Journal of Botany 51:166–172.
  • Khanduri VP, Sharma CM. 2009. Cyclic pollen production in Cedrus deodara. Sexual Plant Reproduction 22:53–61.
  • King DC, Schubert BA, Jahren AH. 2012. Practical considerations for the use of pollen d13C value as a paleoclimate indicator. Rapid Communications in Mass Spectrometry 26:2165–2172.
  • Knight CA, Clancy RB, Götzenberger L, Dann L, Beaulieu JM. 2010. On the relationship between pollen size and genome size. Journal of Botony 2010:1–7.
  • Körner C, Farquhar GD, Wong SC. 1991. Carbon isotope discrimination by plants follows latitudinal and altitudinal trends. Oecologia 88:30–40.
  • Kurtz EB, Liverman JL, Tucker H. 1958. Some effects of temperature on pollen characters. Bulletin of the Torrey Botanical Club 87:85–94.
  • Lamb HF, Eicher U, Switsur V. 1989. An 18,000-year record of vegetation, lake-level and climatic change from Tigalmamine, Middle Atlas, Morocco. Journal of Biogeography 16:65–74.
  • Lau T, Stephenson A. 1994. Effects of soil phosphorus on pollen production, pollen size, pollen phosphorus content, and the ability to sire seeds in Cucurbita pepo (Cucurbitaceae). Sexual Plant Reproduction 7:215–220.
  • Lau T, Stephenson A. 1993. Effects of soil nitrogen on pollen production, pollen grain size, and pollen performance in Cucurbita pepo (Cucurbitaceae). American Journal of Botany 80:763–768.
  • Linares JC, Taïqui L, Sangüesa-Barreda G, Seco JI, Camarero JJ. 2013. Age-related drought sensitivity of Atlas cedar (Cedrus atlantica) in the Moroccan Middle Atlas forests. Dendrochronologia 31:88–96.
  • Loader NJ, Hemming DL. 2004. The stable isotope analysis of pollen as an indicator of terrestrial palaeoenvironmental change: a review of progress and recent developments. Quaternary Science Reviews 23:893–900.
  • Lomax BH, Fraser WT, Harrington G, Blackmore S, Sephton MA, Harris NBW. 2012. A novel palaeoaltimetry proxy based on spore and pollen wall chemistry. Earth and Planetary Science Letters 353:22–28.
  • Lu Y, Jin B, Wang L, Wang Y, Wang D, Jiang X, Chen P. 2011. Adaptation of male reproductive structures to wind pollination in gymnosperms: cones and pollen grains. Canadian Journal of Plant Science 91:897–906.
  • Magri D, Di Rita F, Aranbarri J, Fletcher W, González-Sampériz P. 2017. Quaternary disappearance of tree taxa from Southern Europe: timing and trends. Quaternary Science Reviews 163:23–55.
  • Mäkelä EM. 1996. Size distinctions between Betula pollen types — A review. Grana 35:248–256.
  • Miller PD. 1982. Maize Pollen: collection and enzymology. In: Sheridan WF, editor. Maize for biological research. Charlottesville: Plant Molecular Biology Association; p. 279–293.
  • Nakagawa T, Yasuda Y, Tabata H. 1996. Pollen morphology of Himalayan Pinus and Quercus and its importance in palynological studies in Himalayan area. Review of Palaeobotany and Palynology 91:317–329.
  • Nelson DM. 2012. Carbon isotopic composition of Ambrosia and Artemisia pollen: Assessment of a C3-plant paleophysiological indicator. New Phytologist 195:787–793.
  • Nelson DM, Hu FS, Michener RH. 2006. Stable-carbon isotope composition of Poaceae pollen: an assessment for reconstructing C3 and C4 grass abundance. The Holocene 16:819–825.
  • Nelson DM, Hu FS, Mikucki JA, Tian J, Pearson A. 2007. Carbon-isotopic analysis of individual pollen grains from C3 and C4 grasses using a spooling-wire microcombustion interface. Geochimica et Cosmochimica Acta 71:4005–4014.
  • Niklas KJ. 1985. The aerodynamics of wind pollination. The Botanical Review 51:328–386.
  • Praglowski J. 1970. The effects of pre-treatment and the embedding media on the shape of pollen grains. Review of Palaeobotany and Palynology 10:203–208.
  • Punt W, Hoen PP, Blackmore S, Nilsson S, Le Thomas A. 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology 143:1–81.
  • Qiao CY, Ran JH, Li Y, Wang XQ. 2007. Phylogeny and biogeography of Cedrus (Pinaceae) inferred from sequences of seven paternal chloroplast and maternal mitochondrial DNA regions. Annals of Botany 100:573–580.
  • R Core Team. 2016. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
  • Radaeski JN, Bauermann SG, Pereira AB. 2016. Poaceae Pollen from Southern Brazil: distinguishing grasslands (Campos) from Forests by Analyzing a Diverse Range of Poaceae Species. Frontiers in Plant Science 7:1–18.
  • Reitsma T. 1969. Size modification of recent pollen grains under different treatments. Review of Palaeobotany and Palynology 9:175–202.
  • Renau-Morata B, Nebauer SG, Sales E, Allainguillaume J, Caligari P, Segura J. 2005. Genetic diversity and structure of natural and managed populations of Cedrus atlantica (Pinaceae) assessed using random amplified polymorphic DNA. American Journal of Botany 92:875–884.
  • Rhanem M. 2011. Aridification du climat régional et remontée de la limite inférieure du cèdre de l'Atlas (Cedrus atlantica Manetti) aux confins de la plaine de Midelt (Maroc). Physio-Géo 5:143–165.
  • Rozema J, Noordijk AJ, Broekman RA, van Beem A, Meijkamp BM, de Bakker NVJ, van de Staaij JWM, Stroetenga M, Bohncke SJP, Konert M, et al. 2001. (Poly)phenolic compounds in pollen and spores of Antarctic plants as indicators of solar UV-B: a new proxy for the reconstruction of past solar UV-B? Plant Ecology 154:9–26.
  • Rozema J, van Geel B, Björn LO, Lean J, Madronich S. 2002. Toward solving the UV puzzle. Science 296:1621–1622.
  • Schoch-Bodmer H. 1936. Zur Methodik der Grössenbestimmung von Pollenkörner, mit besonderer Berücksichtigung von Corylus avellana. Berichte Schweizerische Botanische Gesellschaft 45:62–70.
  • Smith RW. 1923. Life history of cedrus Atlantica. Botanical Gazette 75:203–208.
  • Sperazza M, Moore JN, Hendrix MS. 2004. High-Resolution particle size analysis of naturally occurring very fine-grained sediment through laser diffractometry. Journal of Sedimentary Research 74:736–743.
  • Syvitski JPM. 1991. Principles, methods and application of particle size analysis. Cambridge: Cambridge University Press.
  • Tate JA, Soltis DE, Soltis PS. 2005. Polyploidy in plants. In: Ryan GT, editor. The evolution of the genome. Boston: Academic Press.
  • Tekleva MV, Polevova SV, Zavialova NE. 2007. On some peculiarities of sporoderm structure in members of the Cycadales and Ginkgoales. Paleontological Journal 41:1162–1178.
  • Terrab A, Paun O, Talavera S, Tremetsberger K, Arista M, Stuessy TF. 2006. Genetic diversity and population structure in natural populations of Moroccan Atlas cedar (Cedrus atlantica; Pinaceae) determined with cpSSR markers. American Journal of Botany 93:1274–1280.
  • Tiwari SP, Yadav D, Chauhan DK. 2012. Scanning Electron microscopic study of some saccate pollen grains of Pinaceae and Podocarpaceae. National Academy Science Letters 35:415–419.
  • Traverse A. 2007. Paleopalynology. 2nd ed. Dordrecht: Springer Netherlands.
  • U.S. Geological Survey. 2017. Global land cover characterization (GLCC) [Internet]. Available from: https://lta.cr.usgs.gov/GLCC
  • Vonhof MJ, Harder LD. 1995. Size-number trade-offs and pollen production by papilionaceous legumes. American Journal of Botany 82:230–238.
  • Whitehead DR. 1983. Wind pollination: ecological and evolutionary perspectives. In: Real L, editor. Pollination biology. Orlando: Academic Press.
  • Willis KJ, Feurdean A, Birks HJB, Bjune AE, Breman E, Broekman R, Grytnes JA, New M, Singarayer JS, Rozema J. 2011. Quantification of UV-B flux through time using UV-B-absorbing compounds contained in fossil Pinus sporopollenin. New Phytologist 192:553–560.
  • Zielhofer C, Fletcher WJ, Mischke S, De Batist M, Campbell JFE, Joannin S, Tjallingii R, El Hamouti N, Junginger A, Stele A, et al. 2017. Atlantic forcing of Western Mediterranean winter rain minima during the last 12,000 years. Quaternary Science Reviews 157:29–51.