389
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Miocene paleoenvironments and paleoclimatic reconstructions based on the palynology of the Solimões Formation of Western Amazonia (Brazil)

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon

References

  • Adegoke OS, Jan du Chêne RE, Agumanu AE, Ajayi PO. 1978. Palynology and age of the Kerri-Kerri Formation, Nigeria. Revista Española de Micropaleontologa. 10(2):267–283.
  • Barth OM, Melhem TS. 1988. Glossário ilustrado de palinologia. Campinas (Brazil): UNICAMP.
  • Bernal R, Bacon CD, Balslev H, Hoorn C, Bourlat SJ, Tuomisto H, Salamanca S, Manen MT, Romero I, Sepulchre P, et al. 2019. Could coastal plants in western Amazonia be relicts of past marine incursions? Journal of Biogeography. 46(8):1749–1759.
  • Boltenhagen E. 1976. Pollen et spores Senoniens du Gabon [Pollen and spores from Senonian Gabon]. Cahiers de Micropaleontologie. 3:1–28. French.
  • Boonstra M, Ramos MIF, Lammertsma EI, Antoine P-O, Hoorn C. 2015. Marine connections of Amazonia: evidence from foraminifera and dinoflagellate cysts (early to middle Miocene, Colombia/Peru). Paleogeography, Paleoclimatology, Paleoecology. 417:176–194.
  • Caputo MV, Soares EAA. 2016. Eustatic and tectonic change effects in the reversion of the transcontinental Amazon River drainage system. Brazilian Journal of Geology. 46(2):301–328.
  • Cárdenas D, De La Parra F, Espinoza-Campuzano C. 2019. Morphologic variation of two key biostratigraphical proteaceous-like pollen taxa across the Cretaceous–Paleogene boundary in northern South America. Grana. 58(4):276–291.
  • Cárdenas D, Oboh-Ikuenobe F, Jaramillo C. 2021. New acritarch and peridinioid dinoflagellate cyst species and from the Oligocene-Miocene of Colombia. Review of Palaeobotany and Palynology. 290:104427.
  • Chao A, Chazdon RL, Colwell RK, Shen TJ. 2004. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecology Letters. 8(2):148–159.
  • Colinvaux PA, De Oliveira PE, Moreno JE. 1999. Amazon pollen manual and atlas. New York (NY): Harwood Academic Press.
  • Cookson IC, Pike KM. 1954. Some dicotyledonous pollen types from Cainozoic deposits in the Australian region. Australian Journal of Botany. 2 (2):197–219.
  • Cramer BS, Miller KG, Barrett PJ, Wright JD. 2011. Late Cretaceous-Neogene trends in deep ocean temperature and continental ice volume: reconciling records of benthic foraminiferal geochemistry (δ18O and Mg/Ca) with sea-level history. Journal of Geophysical Research. 116(C12):C12023.
  • Cruz NMC. 1984. Palinologia do Linhito do Solimões no Estado do Amazonas. Paper presented at: Anais do II Simpósio Amazônico; Manaus (AM); p. 7.
  • Dale B. 1996. Dinoflagellate cyst ecology: modeling and geological applications. In Jansonius J, McGregor DC, editors. Palynology: principles and applications. Dallas (TX): American Association of Stratigraphic Palynologists Foundation; p. 317–344.
  • D’Apolito C, Jaramillo C, Harrington G. 2021. Miocene palynology of the Solimões Formation (well 1-AS-105-AM), western Brazilian Amazonia. Smithsonian Contributions to Paleobiology. 105:1–134.
  • De Boer B, Van de Wal R, Bintanja R, Lourens L, Tuenter E. 2010. Cenozoic global ice-volume and temperature simulations with 1-D ice-sheet models forced by benthic δ18O records. Annals of Glaciology. 51(55):23–33.
  • de Vernal A, Hillaire-Marcel C, Rochon A, Fréchette B, Henry M, Solignac S, Bonnet S. 2013. Dinocyst-based reconstructions of sea ice cover concentration during the Holocene in the Arctic Ocean, the northern North Atlantic Ocean, and its adjacent seas. Quaternary Science Reviews. 79:111–121.
  • de Verteuil L. 1996. Data report: upper Cenozoic dinoflagellate cysts from the continental slope and rise of New Jersey. In: Mountain GS, Miller KG, Blum P, Poaf CW, editors. Proceedings of the Ocean Drilling Program, scientific results. College Station (TX): A & M University; p. 439–454.
  • Dueñas H. 1980. Palynology of Oligocene-Miocene strata of borehole Q-E-22, Planeta Rica, Northern Colombia. Review of Palaeobotany and Palynology. 10:318–328.
  • Edwards LE. 1989. Supplemented graphic correlation: a powerful tool for paleontologists and nonpaleontologists. Palaios. 4(2):127–143.
  • Eiras JF, Becker CR, Souza EM, Gonzaga FG, Silva JGF, Daniel LMF, Matsuda NS, Feijó FJ. 1994. Bacia do Solimões. Boletim de Geociências da Petrobrás. 8:17–45.
  • Erdtman G. 1952. Pollen morphology and plant taxonomy – angiosperms. Stockholm (Sweden): Almquist & Wiksell.
  • Espinosa BS, D'Apolito C, Silva-Caminha SAF. 2021. Marine influence in western Amazonia during the late Miocene. Global and Planetary Change. 205:103600.
  • Germeraad JH, Hopping CA, Muller J. 1968. Palynology of Tertiary sediments from tropical areas. Review of Palaeobotany and Palynology. 6(3-4):189–348.
  • Goldner A, Herold N, Huber M. 2014. The challenge of simulating the warmth of the mid-Miocene climatic optimum in CESM1. Climate of the Past. 10(2):523–536.
  • Gomes BT, Absy ML, D’Apolito C, Jaramillo C, Almeida R. 2021. Compositional and diversity comparisons between the palynological records of the Neogene (Solimões Formation) and Holocene sediments of Western Amazonia. Palynology. 45(1):3–14.
  • González-Guzmán AE. 1967. A palynological study on the Upper Los Cuervos and Mirador Formations (Lower and Middle Eocene; Tibu area, Colombia). Leiden: E.J. Brill.
  • Grímsson F, Grimm G, Zetter R. 2018. Evolution of pollen morphology in Loranthaceae. Grana. 57(1-2):16–116.
  • Gross M, Piller WE, Ramos MIF, Paz JDS. 2011. Late Miocene sedimentary environments in south-western Amazonia (Solimões Formation; Brazil). Journal of South American Earth Sciences. 32(2):169–181.
  • Halbritter H. 2015. Cleome boliviensis. In: PalDat – A palynological database. 2021. Viena (Austria): AutPal – Society for the Promotion of Palynological Research in Austria. [updated 2021 May 05, accessed 2021 May 07]. https://www.paldat.org/.
  • Haq BU, Hardenbol J, Vail PR. 1987. Chronology of fluctuating sea levels since the Triassic (250 million years ago to present). Science. 235(4793):1156–1167.
  • Harley MM, Baker WJ. 2001. Pollen aperture morphology in Arecaceae: application within phylogenetic analyses, and a summary of the fossil record of palm-like pollen. Grana. 40(1-2):45–77.
  • Hijmans RJ, van Etten J, Mttiuzzi M, Summer M, Greenberg J, Lamiguero OP, Bevan A, Racine EB, Shortridge A. 2015. raster: geographic data analysis and modeling [accessed 2021 March 05]. https://cran.r-project.org/web/packages/raster/index.html.
  • Hoorn C. 1993. Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: results of a palynostratigraphic study. Paleogeography, Paleoclimatology, Paleoecology. 105(3-4):267–309.
  • Hoorn C. 1994a. An environmental reconstruction of the palaeo-Amazon River system (Middle to Late Miocene, NW Amazonia). Paleogeography, Paleoclimatology, Paleoecology. 112(3-4):187–238.
  • Hoorn C. 1994b. Fluvial palaeoenvironments in the intracratonic Amazonas Basin (Early Miocene-early Middle Miocene, Colombia). Paleogeography, Palaeoclimatology, Palaeoecology. 109(1):1–54.
  • Hoorn C, Bogotá ARG, Romero-Baez M, Lammertsma EI, Flantua S, Dantas EL, Dino R, Do Carmo DA, C, Junior F. 2017. The Amazon at sea: onset and stages of the Amazon River from a marine record in the Foz do Amazonas Basin (Brazilian Equatorial Margin), with special reference to vegetation turnover in the Plio-Pleistocene. Global and Planetary Change. 153:51–65.
  • Hoorn C, van der Ham R, de la Parra F, Salamanca S, ter Steege H, Banks HI, Star W, van Heuven BJ, Langelaan R, Carvalho FA, et al. 2019. Going north and south: the biogeographic history of two Malvaceae in the wake of Neogene Andean uplift and connectivity between the Americas. Review of Palaeobotany and Palynology. 264:90–109.
  • Hoorn C, Wesselingh FP, ter Steege H, Bermudez MA, Mora A, Sevink J, Sanmartín I, Sanchez-Meseguer A, Anderson CL, Figueiredo JP, et al. 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science. 330(6006):927–931.
  • [INMET] Instituto Nacional de Meteorologia. 2021. Brasil. [accessed 2021 Jan 21]. https://bdmep.inmet.gov.br.
  • IPCC. 2014. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the intergovernmental panel on climate change. Core Writing Team, Pachauri RK, Meyer LA, editors. Geneva (Switzerland): IPCC; p. 151.
  • Jaramillo C, Cardenas A. 2013. Global warming and neotropical rainforests: a historical perspective. Annual Review of Earth and Planetary Sciences. 41(1):741–766.
  • Jaramillo C, Dilcher DL. 2001. Middle Paleogene palynology of central Colombia, South America: a study of pollen and spores from tropical latitudes. Palaeontographica Abteilung B. 258(4-6):87–213.
  • Jaramillo C, Hoorn C, Silva SAF, Leite F, Herrera F, Quiroz L, et al. 2010. The origin of the modern Amazon rainforest: implications of the palynological and palaeobotanical record. In: Hoorn C, Wesselingh FP, editors. Amazonia: landscape and species evolution – a look into the past. Oxford (UK): Blackwell Publishing; p. 317–334.
  • Jaramillo C, Moreno JE, Ramirez V, da Silva S, Barrera A, Adhara B, Moron S, Herrera F, Escobar J, Koll R, et al. 2014. Palynological record of the last 20 million years in Panama. In: Stevens WD, Montiel OM, Raven P, editors. Paleobotany and biogeography: a Festschrift for Alan Graham in his 80th year. St Louis (MO): Missouri Botanical Garden Press; p. 134–253.
  • Jaramillo C, Rueda MJ. 2021. A Morphological Electronic Database of Cretaceous, Tertiary and Extant pollen and spores from Northern South America, v. 2021. http://biogeodb.stri.si.edu/jaramillosdb/web/morphological/
  • Jaramillo C, Romero I, D’Apolito C, Bayona G, Duarte E, Louwye S, Escobar J, Luque J, Carrillo-Briceño JD, Zapata V, et al. 2017. Miocene flooding events of western Amazonia. Science Advances. 3(5):e1601693.
  • Jaramillo C, Rueda M, Torres V. 2011. A palynological zonation for the Cenozoic of the Llanos and Llanos Foothills of Colombia. Palynology. 35(1):46–84.
  • Joetzjer E, Douville H, Delire C, Ciais P. 2013. Present-day and future Amazonian precipitation in global climate models: CMIP5 versus CMIP3. Climate Dynamics. 41(11-12):2921–2936.
  • Jorge V, D'Apolito C, da Silva-Caminha SAF. 2019. Exploring geophysical and palynological proxies for paleoenvironmental reconstructions in the Miocene of western Amazonia (Solimões Formation, Brazil). Journal of South American Earth Sciences. 94:102223.
  • Jardiné S, Magloire L. 1965. Palynologie et stratigraphie du Crétacé des bassins du Senegal et de Cote d'Ivoire [Cretaceous palynology and stratigraphy of the Senegal and Ivory Coast basins]. Mémoires du Bureau de Recherches Géologiques et Minières. 32:187–245. French.
  • Juggins S. 2020. Package rioja – analysis of Quaternary science data [accessed 2021 March 05] https://cran.r-project.org/web/packages/rioja/index.html.
  • Kachinasz KR, Silva-Caminha SAF. 2016. Palinoestratigrafia da Formação Solimões: comparação entre bioestratigrafia tradicional e o método de associações unitárias [Palinoestratigraphy of the Solimões Formation: comparison between traditional biostratigraphy and the method of unitary associations]. Revista Brasileira de Paleontologia. 19(3):481–490.
  • Kedves M. 1995. Upper Cretaceous spores from Egypt. Hungary: Szeged.
  • Khansari E, Zarre S, Alizadeh K, Attar F, Aghabeigi F, Salmaki Y. 2012. Pollen morphology of Campanula (Campanulaceae) and allied genera in Iran with special focus on its systematic implication. Flora – Morphology Distribution Functional Ecology of Plants. 207(3):203–2011.
  • Kirschner J, Hoorn C. 2019. The onset of grasses in the Amazon drainage basin, evidence from the fossil record. Frontiers of Biogeography. 12:1–21.
  • Klaus W. 1960. Sporen der Karnischen Stufe der ostalpinen Trias [Spores of the Carnian stage from the Eastern Alpine Triassic]. Jahrbuch der Geologischen Bundesanstalt. 5:107–184.
  • Krutzsch W. 1959. Mikropaläontologische (sporenpaläontologische) Untersuchungen in der Braunkohle des Geiseltales-[Part] I, Die Sporen und die Sporenartigen sowie ehemals im Geiseltal zu Sporites gestellten Formeinheiten der Sporae dispersae der mitteleozänen Braunkohle des mittleren Geisel tales (Tagebau Neumark-West i.w.S.) unter Berücksichtigung und Revision weiterer Sporenformen aus der bisherigen Literatur [Micropaleontological (paleopalinological) investigations in the lignite of the Geiseltal- [Part] I, The Spores and the Spore-like ones as well as formerly in the Geiseltal to Sporites gestural form units of the Sporae dispersae of the Middle Eocene Further spore forms from the earlier literature]. Geologie. 8:21–22.
  • Krutzsch W. 1970. Atlas der mittel- und jungtertiären dispersen Sporen- und pollen – Sowie der Mikroplanktonformen des nördlichen Mitteleuropas. Lieferung VII: monoporate, monocolpate, longicolpate, dicolpate und ephedrioide (polyplicate) Pollenformen [Atlas of the Middle and Upper Tertiary dispersed spores and pollen as well as the mikroplankton forms of northern central Europe. VII: Monoporate, monocolpate, longicolpate dicolpate an dephedroide (polyplicate) pollen forms]. Berlin (Germany): VEB Gustav Fischer Verlag Jena.
  • Latrubesse EM, Cozzuol M, Silva-Caminha SAF, Rigsby CA, Absy ML, Jaramillo C. 2010. The late Miocene paleogeography of the Amazon basin and the evolution of the Amazon River system. Earth-Science Reviews. 99(3-4):99–124.
  • Leidelmeyer P. 1966. The Paleogene and Lower Eocene pollen flora of Guyana. Leidse Geologische Mededeelingen. 38:49–70.
  • Leite FPR, Paz J, do Carmo DA, Silva-Caminha SA. 2017. The effects of the inception of Amazonian transcontinental drainage during the Neogene on the landscape and vegetation of the Solimões Basin. Palynology. 41(3):412–422.
  • Leite FPR, Silva-Caminha SAF, D’Apolito C. 2021. New Neogene index pollen and spore taxa from the Solimoes Basin (Western Amazonia), Brazil. Palynology. 45(1):115–141.
  • Linhares AP, Gaia VS, Ramos MIF. 2017. The significance of marine microfossils for paleoenvironmental reconstruction of the Solimões Formation (Miocene), western Amazonia, Brazil. Journal of South American Earth Sciences. 79:57–66.
  • Lorente MA. 1986. Palynology and palynofacies of the Upper Tertiary in Venezuela [Dissertatione Botanicae, Band 99]. Berlin (Germany): Cramer; p. 20–30.
  • Maia RG, Godoy HK, Yamaguti HS, Moura PA, Costa FS, Holanda MA, Costa J. 1977. Projeto de carvão no Alto Solimões. Manaus (Brazil): DNPM/CPRM.
  • Maitner BS, Boyle B, Casler N, Condit R, Donoghue J, Durán SM, Guaderrama D, Hinchliff CE, Jørgensen PM, Kraft NJB, et al. 2018. The bien r package: a tool to access the Botanical Information and Ecology Network (BIEN) Database. Methods in Ecology and Evolution. 9(2):373–379.
  • Martínez C, Jaramillo C, Correa-Metrío A, Crepet W, Moreno JE, Aliaga A, Moreno F, Ibañez-Mejia M, Bush MB. 2020. Neogene precipitation, vegetation, and elevation history of the Central Andean Plateau. Science Advances. 6(35):eaaz4724.
  • Mchedlishvili ND. 1961. Liliaceae. In: Samoilovich SR, Mtchedlishvili ND, editors. Pyltsa i spory zapadnoi Sibiri, yura paleotsen. Leningrad (Russia): Trudy Vsesoyuznogo Neftyanogo Nauchno-Issledovatel'skogo Geologorazvedochnogo Instituta; p. 150–150.
  • Miller K, Browning J, Schmelz WJ, Kopp R, Mountain G, Wright J. 2020. Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Science Advances. 6(20):eaaz1346.
  • Miller KG, Kominz MA, Browning JV, Wright JD, Mountain GS, Katz ME, Sugarman PJ, Cramer BS, Christie-Blick N, Pekar SF. 2005. The Phanerozoic record of global sea-level change. Science. 310 (5752):1293–1298.
  • Muller J. 1968. Palynology of the Pedawan and Plateau Sandstone formations (Cretaceous-Eocene) in Sarawak. Micropaleontology. 14(1):1–37.
  • Muller J, Giacomo E, Van Erve AW. 1987. A palynological zonation for the Cretaceous, Tertiary, and Quaternary of northern South America. American Association of Stratigraphic Palynologists Contributions Series 19, Dallas, TX, USA.
  • Müller RD, Sdrolias M, Gaina C, Steinberger B, Heine C. 2008. Long-term sea-level fluctuations driven by ocean basin dynamics. Science. 319 (5868):1357–1362.
  • Norvick MS, Burger D. 1975. Palynology of the Cenomanian of Bathurst Island, Northern Territory, Australia. Bureau of Mineral Resources Australia. 151:1–169.
  • Ortiz JR, Jaramillo C. 2020. SDAR: stratigraphic data analysis [accessed 2020 Sep 20]. https://cran.r-project.org/package=SDAR.
  • Pierce RL. 1961. Lower Upper Cretaceous plant microfossils from Minnesota. Minnesota Geological Survey Bulletin. 42:1–86.
  • Potonié R. 1956. Synopsis der Gattungen der Sporae dispersae. I. Teil: Sporites [Synopsis of the genera Sporae dispersae. Part I: Sporites]. Beihefte zum Geologischen Jahrbuch. 23:103.
  • Potonié R. 1958. Synopsis der Gattungen der Sporae dispersae. II. Teil: Sporites (Nachtage), Saccites, Aletes, Praecolpates, Polyplicates, Monocolpates [Synopsis of the genera Sporae dispersae. Part II: Sporites (addendum), Saccites, Aletes, Praecolpates, Polyplicates, Monocolpates]. Beihefte zum Geologischen Jahrbuch. 31:114. German.
  • Punt W, Hoen PP, Blackmore S, Nilsson S, Le-Thomas A. 2007. Glossary of pollen and spore terminology. Review of Palaeobotany and Palynology. 143(1-2):1–81.
  • R Development Core Team. 2021. R: a language and environment for statistical computing. Release 4.05. Vienna (Austria): R Foundation for Statistical Computing.
  • Regali MS, Uesegui N, Santos A. 1974. Palinologia dos sedimentos Meso–Cenozoicos do Brasil (I). Boletim Técnico da Petrobrás. 17:263–362.
  • Salard-Cheboldaeff M. 1974. Pollens tertiaries du Cameroun rapportés a la famille des Hippocratéacées [Tertiary pollens from Cameroon reported to the Hippocrateaceae Family]. Pollen et Spores. 16:499–506. French.
  • Salard-Cheboldaeff M. 1978. Sur la palynoflora Maestrichtienne et Tertiare du bassin sedimentaire littoral du Cameroun [On the Maestrichtian and Tertiary palynoflora of the coastal sedimentary basin of Cameroon]. Pollen et Spores. 20:215–260.
  • Sanches-Melo A. 2019. Package CommEcol [accessed 2021 Mar 05]. https://cran.r-project.org/web/packages/CommEcol/index.html.
  • Schrank E. 1994. Palynology of the Yesomma Formation in Northern Somalia: a study of pollen, spores and associated phytoplankton from the Late Cretaceous Palmae Province. Palaeontographica Abteilung B. 23:63–112.
  • Shaw AB. 1964. Time in stratigraphy. New York (NY): McGraw-Hill.
  • Skarby A. 1964. Revision of Gleicheniidites senonicus Ross: Stockholm Contr. Geology. 11:59–77.
  • Shephard GE, Müller RD, Liu L, Gurnis M. 2010. Miocene drainage reversal of the Amazon River driven by plate–mantle interaction. Nature Geoscience. 3(12):870–875.
  • Silva-Caminha SAF, D’Apolito C, Jaramillo C, Espinosa BS, Rueda M. 2020. Palynostratigraphy of the Ramon and Solimões formations in the Acre Basin, Brazil. Journal of South American Earth Sciences. 103:1–8.
  • Silva-Caminha SAF, Jaramillo C, Absy ML. 2010. Neogene palynology of the Solimões Basin, Brazilian Amazonia. Palaeontographica Abteilung B. 283(1):1–67.
  • Silveira RR, Souza PA. 2015. Palinologia (grãos de pólen de angiospermas) das formações Solimões e Içá (bacia do Solimões), nas regiões de Coari e Alto Solimões, Amazonas. Revista Brasileira de Paleontologia. 18(3):455–474.
  • Silveira RR, Souza PA. 2016. Palinologia (esporos de fungos e pteridófitas, grãos de pólens de gimnospermas, cistos de algas e escolecodonte) das formações Solimões e Içá (Neogeno e Pleistoceno, Bacia do Solimões), Amazonas, Brasil. Pesquisas em Geociências. 43(1):17–39.
  • Silveira RR, Souza PA. 2017. Palinoestratigrafia da Formação Solimões na Região do Alto Solimões (Atalaia do Norte e Tabatinga), Amazonas, Brasil. Geosciences = Geociências. 36(1):100–117.
  • Sivaguru M, Urban MA, Fried G, Wesseln CJ, Mander L, Punyasena SW. 2018. Comparative performance of airyscan and structured illumination superresolution microscopy in the study of the surface texture and 3D shape of pollen. Microscopy Research and Technique. 81(2):101–114.
  • Slimani H, Louwye S, Toufiq A. 2010. Dinoflagellate cysts from the Cretaceous-Paleogene boundary at Ouled Haddou, southeastern Rif, Morocco: biostratigraphy, paleoenvironments and paleobiogeography. Palynology. 34(1):90–124.
  • Smith V, Warny S, Jarzen DM, Demchuk T, Vajda V, Gulick SPS. 2020. Paleocene–Eocene palynomorphs from the Chicxulub impact crater, Mexico. Part 2: Angiosperm pollen. Palynology. 44(3):489–519.
  • Srivastava SK. 1969. Assorted angiosperm pollen from the Edmonton Formation (Maestrichtian), Alberta, Canada. Canadian Journal of Botany. 47(6):975–989.
  • Stead DT. 2007. Cenozoic palynofloras of Northeast Libya. In: Keegan JB, Mansouri AL, editors. Subsurface Biostratigraphy of the Cretaceous to Cenozoic of Northeast Libya. Wrexham (UK): Wellstrat; p. 183–233.
  • ter Steege H, Pitman NCA, Sabatier D, Baraloto C, Salomao RP, Guevara JE, Phillips OL, Castilho CV, Magnusson WE, Molino J-F, et al. 2013. Hyperdominance in the amazonian tree flora. Science. 342(6156):1243092–1243334.
  • Thomas WW. 1999. Conservation and monographic research on the flora of tropical America. Biodiversity and Conservation. 8(8):1007–1015.
  • Thomson PW, Pflug H, Hans D. 1953. Pollen und Sporen des mitteleuropäischen tertiärs [Pollen and spores of the Central European tertiary]. Palaeontographica Abteilung B. 94:1–138.
  • Van der Hammen T. 1954. The development of Colombian flora throughout geologic periods: I, Maestrichtian to Lower Tertiary. Boletín Geológico. 2:49–106.
  • Van der Hammen T. 1956b. Description of some genera and species of fossil pollen and spores. Boletín Geológico. 4:103–109.
  • Van der Hammen T, Wymstra TA. 1964. A palynological study on the Tertiary and Upper Cretaceous of British Guayana. Leidse Geologische Mededelingen. 30:183–241.
  • Van der Kaars WA. 1983. A palynological-paleoecological study of the lower Tertiary coal-bed sequence from El Cerrejón (Colombia). Geología Norandina. 8:33–48.
  • Van Hoeken-Klinkenberg PMJ. 1964. A palynological investigation of some Upper Cretaceous sediments in Nigeria. Pollen et Spores. 6(1):209–231.
  • Watson L, Dallwitz MJ. 1993. The genera of Leguminosae-Caesalpinioideae and Swartzieae: descriptions, illustrations, identification, and information retrieval [accessed 2021 Mar 05]. https://www.delta-intkey.com/caes/en/www/elizabet.htm.
  • Wesselingh FP, Guerrero J, Räsänen ME, Pittman RL, Vonhof HB. 2006. Landscape evolution and depositional processes in the Miocene Amazonian Pebas lake/wetland system: evidence from exploratory boreholes in northeastern Peru. Nationaal Natuurhistorisch Museum Postbus. 133:323–361.
  • Wesselingh FP, Räsänen ME, Irion G, Vonhof HB, Kaandorp R, Renema W, Romero PL, Gingras M. 2002. Lake Pebas: a palaeoecological reconstruction of a Miocene, long-lived lake complex in western Amazonia. Cenozoic Research. 1:35–81.
  • Weyland H, Krieger W. 1953. Die Sporen und Pollen der Aachener Kreide und ihre Bedeutung fur die Charakterisierung des Mittleren Senons [The spores and pollen of the Aachen Chalk and their significance for the characterization of the Middle Senonian]. Palaeontographica Abteilung B. 95:2–29.
  • Wijmstra TA. 1971. The palynology of the Guiana Coastal Basin [dissertation]. Amsterdam (The Netherlands): University of Amsterdam.
  • Wood GD, Gabriel AM, Lawson JC. 1996. Palynological techniques - processing and microscopy. In: Jansonius J, McGregor DC, editors. Palynology, principles and applications. Dallas (TX): American Association of Stratigraphic Palynologists Foundation; p. 29–50.
  • You Y, Huber M, Müller RD, Poulsen CJ, Ribbe J. 2009. Simulation of the Middle Miocene climate optimum. Geophysical Research Letters. 36(4):L04702.
  • Zachos J, Pagani M, Sloan L, Thomas E, Billups K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science. 292(5517):686–693.
  • Zachos JC, Dickens GR, Zeebe RE. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature. 451(7176):279–283.
  • Zonneveld KAF, Marret F, Versteegh GJM, Bogus K, Bonnet S, Bouimetarhan I, Crouch E, de Vernal A, Elshanawany R, Edwards L, et al. 2013. Atlas of modern organic dinoflagellate cyst distribution based on 2405 data points. Review of Palaeobotany and Palynology. 191:1–19.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.