252
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Age constraints of the Guttulapollenites hannonicus–Cladaitina veteadensis Biozone in Argentina reveal the first record of Early Triassic (Olenekian) palynofloras in Western Gondwana

ORCID Icon, ORCID Icon, &

References

  • Afonin SA. 2000. Pollen grains of the genus Cladaitina extracted from the gut of the Early Permian insect Tillyardembia (Grylloblattida). Paleontological Journal. 34:575–579.
  • Allen CM, Campbell IH. 2012. Identification and elimination of a matrix-induced systematic error in LA–ICP–MS 206Pb/238U dating of zircon. Chemical Geology. 332-333:157–165.
  • Anderson JM. 1977. The biostratigraphy of the Permian and Triassic, part 3: a review of Gondwana Permian palynology with particular reference to the northern Karoo Basin, South Africa. Memoirs of the Botanical Survey of South Africa. 41:1–67.
  • Archangelsky S, Gamerro JC. 1979. Palinología del Paleozoico Superior en el subsuelo de la Cuenca Chacoparanense, República Argentina. I. Estudio sistemático de los palinomorfos de tres perforaciones de la Provincia de Córdoba. Revista Española de Micropaleontología. 11:417–478.
  • Azcuy CL, Morelli JR. 1970. Geología de la comarca Paganzo-Amaná. El Grupo Paganzo. Formaciones que lo componen y sus relaciones. Revista de la Asociación Geológica Argentina. 25 (4):405– 429.
  • Backhouse J. 1991. Permian palynostratigraphy of the Collie Basin, Western Australia. Review of Palaeobotany and Palynology. 67(3-4):237–314.
  • Balme BE. 1963. Plant microfossils from the Lower Triassic of Western Australia. Palaeontology. 6:12–40.
  • Balme BE. 1970. Palynology of Permian and Triassic strata in the Salt Range and Surghar Range, West Pakistan. In: Kummel B, Teichert C, editors. Stratigraphic boundary problems – Permian and Triassic of West Pakistan. Special Publications 4. Lawrence (KS): University of Kansas; p. 305–453.
  • Becker A, Fijałkowska-Mader A, Nawrocki J, Sobień K. 2020. Integrated palynostratigraphy and magnetostratigraphy of the Middle and Upper Buntsandstein in NE Poland – an approach to correlating Lower Triassic regional isochronous horizons. Geological Quarterly. 64(2):460–479.
  • Benavente CA, Mancuso AC, Bohacs KM. 2019. Paleohydrogeologic reconstruction of Triassic carbonate paleolakes from stable isotopes: encompassing two lacustrine models. Journal of South American Earth Sciences. 95:102292.
  • Bercovici A, Cui Y, Forel MB, Yu J, Vajda V. 2015. Terrestrial paleoenvironment characterization across the Permian–Triassic boundary in South China. Journal of Asian Earth Sciences. 98:225–246.
  • Bercovici A, Vajda V. 2016. Terrestrial Permian–Triassic boundary sections in South China. Global and Planetary Change. 143:31–33.
  • Bodenbender G. 1911. Constitución geológica de la parte meridional de La Rioja y regiones limítrofes. Boletín Academia Nacional de Ciencias de Córdoba. 19:5–220.
  • Bodnar J, Coturel EP, Falco JI, Beltrán M. 2021. An updated scenario for the end-Permian crisis and the recovery of Triassic land flora in Argentina. Historical Biology. 33(12):3654–3672.
  • Brenner W, Foster CB. 1994. Chlorophycean algae from the Triassic of Australia. Review of Palaeobotany and Palynology. 80(3-4):209–314.
  • Catanzaro EJ, Murphy TJ, Shields WR, Garner EL. 1968. Absolute isotopic abundance ratios of common, equal-atom, and radiogenic lead isotopic standards. Journal of Research of the National Bureau of Standards. Section A, Physics and Chemistry. 72(3):261–267.
  • Césari SN. 2007. Palynological biozones and radiometric data at the Carboniferous–Permian boundary in western Gondwana. Gondwana Research. 11(4):529–536.
  • Césari SN, Chiesa JO. 2017. Palynology of the Bajo de Veliz Formation, central-western Argentina: implications for Carboniferous–Permian transition biostratigraphy. Journal of South American Earth Sciences. 78:238–249.
  • Césari SN, Gutiérrez PR. 2000. Palynostratigraphic study of the upper Paleozoic central–western Argentinian sequences. Palynology. 24(1):113–146.
  • Césari SN, Limarino CO, Marenssi S, Ciccioli PL, Bello FC, Ferreira LC, Scarlatta LR, Friedman R. 2022. High-precision U-Pb CA-ID-TIMS calibration of the Permian Lueckisporites-dominated assemblages in westernmost Gondwana: inferences for correlations. Palynology. 46(2):1–20.
  • Césari SN, Limarino CO, Gulbranson EL. 2011. An Upper Paleozoic biochronostratigraphic scheme for the western margin of Gondwana. Earth-Science Reviews. 106(1-2):149–160.
  • Césari SN, Perez Loinaze VS. 2021. Update of the Pennsylvanian palynostratigraphy from central-western Argentina. Journal of South American Earth Sciences. 106:102933.
  • Cirilli S, Radrizzani CP, Ponton M, Radrizzani S. 1998. Stratigraphical and palaeoenvironmental analysis of the Permian-Triassic transition in the Badia Valley (Southern Alps, Italy). Palaeogeography, Palaeoclimatology, Palaeoecology. 138(1-4):85–113.
  • Clarke RFA. 1965. British Permian saccate and monosulcate miospores. Palaeontology. 8:322–354.
  • Colombi CE, Limarino CO, Alcober OA. 2017. Allogenic controls on the fluvial architecture and fossil preservation of the Upper Triassic Ischigualasto Formation, NW Argentina. Sedimentary Geology. 362:1–16.
  • Condon DJ, Schoene B, McLean NM, Bowring SA, Parrish RR. 2015. Metrology and traceability of U-Pb isotope dilution geochronology (EARTHTIME Tracer Calibration Part I). Geochimica et Cosmochimica Acta. 164:464–480.
  • Dávila FM, Astini RA, Ezpeleta M. 2005. Sucesiones lacustres postgondwánicas-preandinas en la región de Famatina (La Rioja y Catamarca). Revista de la Asociación Geológica Argentina. 60:88–95.
  • Dawit EL. 2014. Permian and Triassic microfloral assemblages from the Blue Nile Basin, central Ethiopia. Journal of African Earth Sciences. 99:408–426.
  • de Jersey NJ. 1962. Triassic spores and pollen grains from the Ipswich Coalfield. Geological Survey of Queensland, Publication. 307:1–18.
  • de Jersey NJ. 1979. Palynology of the Permian-Triassic transition in the western Bowen Basin. Geological Survey of Queensland, Publication. 374:1–65.
  • de Jersey NJ. 1990. Triassic and earliest Jurassic miospores from the Murihiku Supergroup, New Zealand. New Zealand Geological Survey Palaeontological Bulletin. 62:1–155.
  • de Jersey NJ, McKellar JL. 2013. The palynology of the Triassic–Jurassic transition in southeastern Queensland, Australia, and correlation with New Zealand. Palynology. 37(1):77–114.
  • di Pasquo M, Souza PA, Kavali PS, Felix C. 2018. Seasonally warmer and humid climates in a lower paleolatitude position of southern Brazil (Paraná Basin): new findings of the Lueckisporites virkkiae zone (late Cisuralian–Guadalupian) in the Serra do Rio do Rastro and neighboring localities. Journal of South American Earth Sciences. 82:143–164.
  • Dolby JH, Balme BE. 1976. Triassic palynology of the Carnarvon Basin, Western Australia. Review of Palaeobotany and Palynology. 22(2):105–168.
  • Dunay RE, Fisher MJ. 1979. Palynology of the Dockum Group (Upper Triassic), Texas, USA. Review of Palaeobotany and Palynology. 28(1):61–92.
  • Ecke HH. 1986. Palynologie des Zechsteins und Unteren Buntsandsteins irn Germanischen Becken [PhD thesis]. Göttingen, Germany: University of Gottingen. (unpubl.).
  • Elsik WC. 1999. Reduviasporonites Wilson 1962: synonymy of the fungal organism involved in the Late Permian crisis. Palynology. 23(1):37–41.
  • Eshet Y, Rampino MR, Visscher H. 1995. Fungal event and palynological record of ecological crisis and recovery across the Permian–Triassic boundary. Geology. 23(11):967–970.
  • Falco JI, Bodnar J, Del Río D. 2020. Revisión estratigráfica del Grupo Los Menucos, Pérmico Tardío-Triásico Temprano del Macizo Nordpatagónico, provincia de Río Negro. Argentina. Revista de la Asociación Geológica Argentina. 77(4):530–550.
  • Fernández Seveso F, Pérez MA, Brisson IE, Alvarez L. 1993. Sequence stratigraphy and tectonic analysis of the Paganzo Basin, western Argentina. Compte Rendus XII International Congress Carboniferous-Permian. 2: 223–260.
  • Fijałkowska A. 1995. Palynostratigraphy and palynofacies of the Permian-Triassic transitional sequence in the Żary Pericline (SW Poland). Geological Quarterly. 39(3):307–332.
  • Foster CB. 1975. Permian plant microfossils from the Blair Athol Coal Measures, Central Queensland, Australia. Palaeontographica Abteilung B. 154:121–171.
  • Foster CB. 1979. Permian plant microfossils of the Blair Athol Coal Measures, Baralaba Coal Measures, and basal Rewan Formation of Queensland. Geological Survey of Queensland. 372:1–244.
  • Foster CB. 1982. Spore-pollen assemblages of the Bowen Basin, Queensland (Australia): their relationship to the Permian-Triassic boundary. Review of Palaeobotany and Palynology. 36(1-2):165–183.
  • Foster CB, Afonin SA. 2006. Syndesmorion gen. nov. – a coenobial alga of Chlorococcalean affinity from the continental Permian–Triassic deposits of Dalongkou section, Xinjiang Province, China. Review of Palaeobotany and Palynology. 138(1):1–8.
  • Foster CB, Stephenson MH, Marshall C, Logan GA, Greenwood DR. 2002. A revision of Reduviasporonites Wilson 1962: description, illustration, comparison and biological affinities. Palynology. 26(1):35–58.
  • Galasso F, Pereira Z, Fernandes P, Spina A, Marques J. 2019. First record of Permo-Triassic palynomorphs of the N’Condédzi sub-basin, Moatize-Minjova Coal Basin, Karoo Supergroup, Mozambique. Revue de Micropaléontologie. 64:100357.
  • Gerstenberger H, Haase G. 1997. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chemical Geology. 136(3-4):309–312.
  • Goubin N. 1965. Description et repartition des principaux pollenites permiens, triassiques et jurassique des sondages du bassin de Morondava (Madagascar). Revue de l’Institut Francais du Petrole. 20:1415–1461.
  • Grauvogel-Stamm L, Ash SR. 2005. Recovery of the Triassic land flora from the end-Permian life crisis. Comptes Rendus Palevol. 4(6-7):593–608.
  • Gulbranson EL, Ciccioli PL, Montañez IP, Marenssi SA, Limarino CO, Schmitz MD, Davydov V. 2015. Paleoenvironments and age of the Talampaya Formation: the Permo-Triassic boundary in northwestern Argentina. Journal of South American Earth Sciences. 63:310–322.
  • Gutiérrez PR, Zavattieri AM, Ezpeleta M, Astini RA. 2011. Palynology of the La Veteada Formation (Permian) in the Sierra de Narvaez, Catamarca Province Argentina. Ameghiniana. 48(2):154–176.
  • Gutiérrez PR, Zavattieri AM, Ezpeleta M. 2014. Estudio palinológico de la Formación La Veteada en su localidad tipo (Pérmico Superior), Sierra de Famatina, La Rioja, Argentina. Granos de polen estriados, plicados y colpados. Ameghiniana. 51(6):529–555.
  • Gutiérrez PR, Zavattieri AM, Ezpeleta M. 2017. Palynology of the la Veteada Formation (Lopingian) at its type locality, Famatina Range, la Rioja Province, Argentina. Spores. Ameghiniana. 54(4):441–464.
  • Gutiérrez PR, Zavattieri AM, Noetinger S. 2018. The Lopingian palynological Guttulapollenites hannonicus–Cladaitina veteadensis assemblage zone of Argentina, stratigraphical implications for Gondwana. Journal of South American Earth Sciences. 88:673–692.
  • Haig DW, Martin SK, Mory AJ, McLoughlin S, Backhouse J, Berrell RW, Kear BP, Russell H, Foster CB, Shi GR, et al. 2015. Early Triassic (early Olenekian) life in the interior of East Gondwana: mixed marine–terrestrial biota from the Kockatea Shale, Western Australia. Palaeogeography, Palaeoclimatology, Palaeoecology. 417:511–533.
  • Hankel O. 1992. Late Permian to Early Triassic microfloral assemblages from the Majiya Chumvi Formation, Kenya. Review of Palaeobotany and Palynology. 72(1-2):129–147.
  • Hankel O. 1993. Early Triassic plant microfossils from Sakamena sediments of the Majunga Basin, Madagascar. Review of Palaeobotany and Palynology. 77(3-4):213–233.
  • Helby RJ. 1973. Review of Late Permian and Triassic Palynology of New South Wales. Special Publication Geological Society of Australia. 4:141–155.
  • Helby R, Morgan R, Partridge AD. 1987. A palynological zonation of the Australian Mesozoic. Memoirs of the Association of Australasian Palaeontologists. 4:1–94.
  • Hermann E, Hochuli PA, Bucher H, Roohi G. 2012. Uppermost Permian to Middle Triassic palynology of the Salt Range and Surghar Range, Pakistan. Review of Palaeobotany and Palynology. 169:61–95.
  • Hochuli PA, Colin JP, Vigran JO. 1989. Triassic biostratigraphy of the Barents Sea Area. In: Collinson JD, editor. Correlation in hydrocarbon exploration. Dordrecht (The Netherlands): Springer; p. 131–153.
  • Jaffey AH, Flynn KF, Glendenin LE, Bentley WC, Essling AM. 1971. Precision measurements of half-lives and specific activities of 235U and 238U. Physical Review C. 4(5):1889–1906.
  • Jansonius J. 1962. Palynology of Permian and Triassic sediments, Peace River area, western Canada. Palaeontographica Abteilung B. 110:35–98.
  • Jha N, Aggarwal N, Mishra S. 2018. A review of the palynostratigraphy of Gondwana sediments from the Godavari Graben, India: global comparison and correlation of the Permian-Triassic palynoflora. Journal of Asian Earth Sciences. 163:1–21.
  • Kar R, Ghosh AK. 2018. First record of Reduviasporonites from the Permian–Triassic transition (Gondwana Supergroup) of India. Alcheringa: An Australasian Journal of Palaeontology. 42(3):373–382.
  • Klaus W. 1963. Sporen aus dem südalpinen Perm. Jahrbuch der Geologischen Bundensanstalt. 106:229–363.
  • Krogh TE. 1973. A low-contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determinations. Geochimica et Cosmochimica Acta. 37(3):485–494.
  • Kürschner WM, Herngreen GFW. 2010. Triassic palynology of central and northwestern Europe: a review of palynofloral diversity patterns and biostratigraphic subdivisions. Geological Society, London, Special Publications. 334(1):263–283.
  • Leschik G. 1956. Sporen aus dem Salzton des zechsteins von Neuhof (Bei Fulda). Palaeontographica Abteilung B. 100:122–142.
  • Limarino CO, Scarlatta LR, Ciccioli PL, Miyno SS, Bello FC, Césari SN. 2022. La Formación La Veteada en su perfil tipo: estratigrafía, significado paleoambiental y edad. Andean Geology. 50(1).
  • Lindström S, McLoughlin S. 2007. Synchronous palynofloristic extinction and recovery after the end-Permian event in the Prince Charles Mountains, Antarctica: implications for palynofloristic turnover across Gondwana. Review of Palaeobotany and Palynology. 145(1-2):89–122.
  • Liu D, Zhang C, Yang D, Pan Z, Kong X, Huang Z, Wang J, Song Y. 2019. Petrography and geochemistry of the Lopingian (Upper Permian)-Lower Triassic strata in the southern Junggar and Turpan basins, NW China: implications for weathering, provenance, and palaeogeography. International Geology Review. 61(8):1016–1036.
  • Liu F, Peng H, Bomfleur B, Kerp H, Zhu H, Shen S. 2020. Palynology and vegetation dynamics across the Permian–Triassic boundary in southern Tibet. Earth-Science Reviews. 209:103278.
  • Liu J, Abdala NF. 2017. Therocephalian (Therapsida) and chroniosuchian (Reptiliomorpha) from the Permo-Triassic transitional Guodikeng Formation of the Dalongkou Section, Jimsar, Xinjiang, China. Vertebrata PalAsiatica. 55(1):24–40.
  • Luppo T, de Luchi MGL, Rapalini AE, Dopico CIM, Fanning CM. 2018. Geochronologic evidence of a large magmatic province in northern Patagonia encompassing the Permian-Triassic boundary. Journal of South American Earth Sciences. 82:346–355.
  • Mädler K. 1964. Die geologische Verbreitung von Sporen und Pollen in der Deutschen Trias. Beihefte zum Geologischen Jahrbuch. 65:1–172.
  • Maheshwari HK, Meyen SV. 1975. Cladostrobus and the systematics of cordaitalean leaves. Lethaia. 8(2):103–123.
  • Mancuso AC, Chemale F, Barredo S, Ávila JN, Ottone EG, Marsicano C. 2010. Age constraints for the northernmost outcrops of the Triassic Cuyana Basin, Argentina. Journal of South American Earth Sciences. 30(2):97–103.
  • Mattinson JM. 2005. Zircon U-Pb chemical abrasion ("CA-TIMS") method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chemical Geology. 220(1-2):47–66.
  • Mays C, Vajda V, Frank TD, Fielding CR, Nicoll RS, Tevyaw AP, McLoughlin S. 2020. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bulletin. 132(7-8):1489–1513.
  • Mays C, Vajda V, McLoughlin S. 2021. Permian–Triassic non-marine algae of Gondwana – distributions, natural affinities and ecological implications. Earth-Science Reviews. 212:103382.
  • McLean NM, Condon DJ, Schoene B, Bowring SA. 2015. Evaluating uncertainties in the calibration of isotopic reference materials and multi-element isotopic tracers (EARTHTIME Tracer Calibration Part II). Geochimica et Cosmochimica Acta. 164:481–501.
  • Metcalfe I, Crowley JL, Nicoll RS, Schmitz M. 2015. High-precision U-Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Research. 28(1):61–81.
  • Metcalfe I, Foster CB, Afonin SA, Nicoll RS, Mundil R, Xiaofeng W, Lucas SG. 2009. Stratigraphy, biostratigraphy and C-isotopes of the Permian–Triassic non-marine sequence at Dalongkou and Lucaogou, Xinjiang Province, China. Journal of Asian Earth Sciences. 36(6):503–520.
  • Mishra S, Aggarwal N, Jha N. 2017. Palaeoenvironmental change across the Permian-Triassic boundary inferred from palynomorph assemblages (Godavari Graben, south India). Palaeobiodiversity and Palaeoenvironments. 98(2):177–204.
  • Mori ALO, Souza PA, Marques JC, Lopes RC. 2012. A new U–Pb zircon age dating and palynological data from a Lower Permian section of the southernmost Parana Basin, Brazil: biochronostratigraphical and geochronological implications for Gondwanan correlations. Gondwana Research. 21(2-3):654–669.
  • Nasdala L, Lengauer CL, Hanchar JM, Kronz A, Wirth R, Blanc P, Kennedy AK, Seydoux-Guillaume AM. 2002. Annealing radiation damage and the recovery of cathodoluminescence. Chemical Geology. 191(1-3):121–140.
  • Noetinger S, Pujana RR, Burrieza A, Burrieza HP. 2017. Use of UV–curable acrylates gels as mounting media for palynological samples. Revista del Museo Argentino de Ciencias Naturales. 19(1):19–23.
  • Nyambe IA, Utting J. 1997. Stratigraphy and palynostratigraphy, Karoo Supergroup (Permian and Triassic), mid-Zambezi Valley, southern Zambia. Journal of African Earth Sciences. 24(4):563–583.
  • Orłowska-Zwolinska T. 1984. Palynostratigraphy of the Buntsandstein in sections of western Poland. Acta Palaeontologica Polonica. 29 (3–4):161–194.
  • Orłowska-Zwolinska T. 1985. Palynological zones of the Polish Epicontinental Triassic. Bulletin of the Polish Academy of Sciences Earth Sciences. 3. 1 (3-4):107–117.
  • Ouyang S, Norris G. 1988. Spores and pollen from the Lower Triassic Heshanggou Formation, Shaanxi Province, North China. Review of Palaeobotany and Palynology. 54:187–231.
  • Ouyang S, Norris G. 1999. Earliest Triassic (Induan) spores and pollen from the Junggar Basin, Xinjiang, northwestern China. Review of Palaeobotany and Palynology. 106(1-2):1–56.
  • Ouyang S, Utting J. 1990. Palynology of upper Permian and lower Triassic rocks, Meishan, Changxing County, Zhejiang Province, China. Review of Palaeobotany and Palynology. 66:65–103.
  • Peng J, Li J, Slater SM, Zhang Q, Zhu H, Vajda V. 2019. Triassic vegetation and climate evolution on the northern margin of Gondwana: a palynological study from Tulong, southern Xizang (Tibet), China. Journal of Asian Earth Sciences. 175:74–82.
  • Pereira Z, Fernandes P, Lopes G, Marques J, Vasconcelos L. 2016. The Permian–Triassic transition in the Moatize–Minjova Basin, Karoo Supergroup, Mozambique: a palynological perspective. Review of Palaeobotany and Palynology. 226:1–19.
  • Playford G. 1965. Plant microfossils from Triassic sediments near Poatina, Tasmania. Journal of the Geological Society of Australia. 12(2):173–210.
  • Romer AS, Jensen JA. 1966. The Chañares (Argentina). Triassic reptiles fauna II. In: sketch of the geology of the Río Chañares-Río Gualo region. Breviora. 252:1–20.
  • Rossello EA, Limarino CO, Ortiz A, Hernández N. 2005. Cuencas de los bolsones de San Juan y La Rioja. Frontera Exploratoria de la Argentina. In VI Congreso de Exploración y Desarrollo de Hidrocarburos. Actas. 7:147–173.
  • Rossi VM, Paterson NW, Helland‐Hansen W, Klausen TG, Eide CH. 2019. Mud‐rich delta‐scale compound clinoforms in the Triassic shelf of northern Pangea (Havert Formation, south‐western Barents Sea). Sedimentology. 66(6):2234–2267.
  • Schmitz MD, Schoene B. 2007. Derivation of isotope ratios, errors and error correlations for U-Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochemistry, Geophysics, Geosystems. 8(8):Q08006.
  • Schneebeli-Hermann E, Bucher H. 2015. Palynostratigraphy at the Permian-Triassic boundary of the Amb section, Salt Range, Pakistan. Palynology. 39(1):1–18.
  • Schneebeli-Hermann E, Hochuli PA, Bucher H, Goudemand N, Brühwiler T, Galfetti T. 2012. Palynology of the lower Triassic succession of Tulong, South Tibet – evidence for early recovery of gymnosperms. Palaeogeography Palaeoclimatology Palaeoecology. 339–341:12–24.
  • Segroves KL. 1967. Cutinized microfossils of probable non-vascular origin from the Permian of Western Australia. Micropaleontology. 13(3):289–305.
  • Souza PA, Félix CM, Saldanha MS. 2016. A new taxonomic and systematic approach on the Gondwana genus Portalites Hemer and Nygreen 1967. Review of Palaeobotany and Palynology. 231:23–32.
  • Spina A, Cirilli S, Utting J, Jansonius J. 2015. Palynology of the Permian and Triassic of the Tesero and Bulla sections (Western Dolomites, Italy) and consideration about the enigmatic species Reduviasporonites chalastus. Review of Palaeobotany and Palynology. 218:3–14.
  • Steiner MB, Eshet Y, Rampino MR, Schwindt DM. 2003. Fungal abundance spike and the Permian–Triassic boundary in the Karoo Supergroup (South Africa). Palaeogeography, Palaeoclimatology, Palaeoecology. 194(4):405–414.
  • Teixeira BM, Astini RA, Gomez FJ, Morales N, Pimentel MM. 2018. Source-to-sink analysis of continental rift sedimentation: Triassic Cuyo basin, Precordillera Argentina. Sedimentary Geology. 376:164–184.
  • Tiwari RS, Rana V. 1981. Sporae disperae of some lower and middle Triassic sediments from Damodar Basin, India. The Palaeobotanist. 27:190–220.
  • Tiwari RS, Tripathi A. 1992. Marker assemblage-zones of spores and pollen species through Gondwana Palaeozoic and Mesozoic sequence in India. The Palaeobotanist. 40:194–236.
  • Turner JCM. 1960. Estratigrafía del tramo medio de la Sierra de Famatina y adyacencias, La Rioja. Boletín de la Academia Nacional de Ciencias. 42:77–126.
  • Turner JCM. 1964. Descripción geológica de la Hoja 15c, Vinchina (provincia de La Rioja). Buenos Aires, Argentina: Boletín de la Dirección Nacional de Geología y Minería 100; p. 81.
  • Vázquez MS, Césari SN. 2017. The Permian palynological Lueckisporites–Weylandites biozone in the San Rafael block and its correlation in western Gondwana. Journal of South American Earth Sciences. 76:165–181.
  • Vigran JO, Gunn M, Mørk A, Worsley D, Hochuli PA. 2014. Palynology and geology of the Triassic succession of Svalbard and the Barents Sea. Geological Survey of Norway Special Publication. 14:1–270.
  • Vijaya, Tiwari RS. 1986. Role of spore pollen species in demarcating the Permo-Triassic boundary in Raniganj Coalfield, West Bengal. The Palaeobotanist. 35(3):242–248.
  • Visscher H. 1971. The Permian and Triassic of the Kingscourt Outlier, Ireland. Geological Survey of Ireland Special Paper. 1:1–114.
  • Visscher H, Van der Zwan CJ. 1981. Palynology of the circum-Mediterranean Triassic: phytogeographical and palaeoclimatological implications. Geologische Rundschau. 70(2):625–634.
  • Wall CJ, Scoates JS, Weis D, Friedman RM, Amini M, Meurer WP. 2018. The stillwater complex: integrating zircon geochronological and geochemical constraints on the age, emplacement history and crystallization of a large, open-system layered intrusion. Journal of Petrology. 59(1):153–190.
  • Wright RP, Askin RA. 1987. The Permian-Triassic boundary in the southern Morondava Basin of Madagascar as defined by plant microfossils. Geophysical Monograph. 41:157–166.
  • Yaroshenko OP. 1997. Palynology and phytogeography of the Early Triassic. Paleontological Journal. 31:168–177.
  • Yaroshenko OP, Golubeva LP, Kalantar IZ. 1991. Miospory I stratigrafija nizhnego Triasa Pechorskoj Sineklizy [Miospores and stratigraphy of the lower Triassic of the Pechora Syncline]. Trudy Geologicheskogo Instituita Akademii nauk 470, Moscow, 135 p. [in Russian].
  • Zavattieri AM, Gutiérrez PR. 2012. A new species of Cladaitina Maheshwari et Meyen (cordaitalean pollen) from Uppermost Permian deposits of the Famatina Range, Central Western of Argentina. Revista Brasileira DE Paleontologia. 15(2):125–134.
  • Zavattieri AM, Gutiérrez PR, Ezpeleta M. 2017. Syndesmorion stellatum (Fijałkowska) Foster et Afonin chlorophycean algae and associated microphytoplankton from lacustrine successions of the La Veteada Formation (late Permian), Paganzo Basin, Argentina. Paleoenvironmental interpretations and stratigraphic implications. Review of Palaeobotany and Palynology. 242:1–20.
  • Zavattieri AM, Gutiérrez PR, Ezpeleta M. 2018. Gymnosperm pollen grains from the La Veteada Formation (Lopingian), Paganzo Basin, Argentina: biostratigraphic and palaeoecological implications. Alcheringa: An Australasian Journal of Palaeontology. 42(2):276–299.
  • Zavattieri AM, Gutiérrez PR, Ezpeleta M, Astini RA. 2008. Palinología de la Formación La Veteada en su región tipo, Famatina Central (La Rioja): primera asociación palinológica del Pérmico Superior tardío de Argentina. Ameghiniana. Suplemento Resúmenes. 45:17R.
  • Zavialova NE, Gomankov AV. 2002. Dispersed pollen of the genus Cladaitina from the Permian deposits of Russia. International meeting and workshops of the Commission International de Microflore du Paléozoïque. Palaeozoic Palynology in the Third Millennium: New Directions in Acritarch, Chitinozoan and Miospore Research, Lille, France; p. 95.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.