Publication Cover
Ozone: Science & Engineering
The Journal of the International Ozone Association
Volume 40, 2018 - Issue 6
381
Views
9
CrossRef citations to date
0
Altmetric
Original Article

Catalytic Ozonation of Oxalic Acid in the Presence of Fe2O3-Loaded Activated Carbon

, &
Pages 448-456 | Received 28 Nov 2017, Accepted 31 Mar 2018, Published online: 11 Apr 2018

References

  • Andreozzi, R., V. Caprio, A. Insola, R. Marotta, and V. Tufano. 1997. “Kinetics of Oxalic Acid Ozonation Promoted by Heterogeneous MnO2 Catalysis.” Industrial & Engineering Chemistry Research 36:4774–78.
  • Beltrán, F. J., F. J. Rivas, L. A. Fernández, P. M. Álvarez, and R. Montero-de-Espinosa. 2002. “Kinetics of Catalytic Ozonation of Oxalic Acid in Water with Activated Carbon.” Industrial & Engineering Chemistry Research 41:6510–17. doi:10.1021/ie020311d.
  • Beltran, F. J., F. J. Rivas, and R. Montero-de-Espinosa. 2005. “Iron Type Catalysts for the Ozonation of Oxalic Acid in Water.” Water Research 39:3553–64. doi:10.1016/j.watres.2005.06.018.
  • Beltrán, F. J., F. J. Rivas, and R. Montero-de-Espinosa. 2002. “Catalytic Ozonation of Oxalic Acid in an Aqueous TiO2 Slurry Reactor.” Applied Catalysis B: Environmental 39:221–31.
  • Bing, J., L. Li, B. Lan, G. Liao, J. Zeng, Q. Zhang, and X. Li. 2012. “Synthesis of Cerium-Doped MCM-41 for Ozonation of P-Chlorobenzoic Acid in Aqueous Solution.” Applied Catalysis B: Environmental 115–116:16–24. doi:10.1016/j.apcatb.2011.12.017.
  • Buxton, G. V., C. L. Greenstock, W. P. Helman, and A. B. Ross. 1988. “Critical Review of Rate Constants for Reactions of Hydrated Electrons Hydrogen Atoms and Hydroxyl Radicals (•OH/•O−) in Aqueous Solution.” Journal of Physical and Chemical Reference Data 17:513–886.
  • Cao, S., Y. Zhu, and Y. Zeng. 2009. “Formation of γ-Fe2O3 Hierarchical Nanostructures at 500°C in a High Magnetic Field.” Journal of Magnetism and Magnetic Materials 321:3057–60. doi:10.1016/j.jmmm.2009.05.005.
  • Chen, W., X. Li, M. Liu, and L. Li. 2017. “Effective Catalytic Ozonation for Oxalic Acid Degradation with Bimetallic Fe-Cu-MCM-41: Operation Parameters and Mechanism.” Journal of Chemical Technology & Biotechnology 92:2862–69. doi:10.1002/jctb.5304.
  • Coopper, Colin, and Robbie Burch. 1999. “An Investigation of Catalytic Ozonation for the Oxidation of Halocarbons in Drinking Water Preparation.” Water Research 33:3695–700.
  • Faria, P. C. C., J. J. M. Órfão, and M. F. R. Pereira. 2006. “Ozone Decomposition in Water Catalyzed by Activated Carbon: Influence of Chemical and Textural Properties.” Industrial & Engineering Chemistry Research 45:2715–21. doi:10.1021/ie060056n.
  • Faria, P. C. C., J. J. M. Órfão, and M. F. R. Pereira. 2008a. “Activated Carbon Catalytic Ozonation of Oxamic and Oxalic Acids.” Applied Catalysis B: Environmental 79:237–43. doi:10.1016/j.apcatb.2007.10.021.
  • Faria, P. C. C., J. J. M. Órfão, and M. F. R. Pereira. 2008b. “Catalytic Ozonation of Sulfonated Aromatic Compounds in the Presence of Activated Carbon.” Applied Catalysis B: Environmental 83:150–59. doi:10.1016/j.apcatb.2008.02.010.
  • Gao, G., J. Kang, J. Shen, Z. Chen, and W. Chu. 2016a. “Catalytic Ozonation of Sulfamethoxazole by Composite Iron-Manganese Silicate Oxide: Cooperation Mechanism between Adsorption and Catalytic Reaction.” Environmental Science and Pollution Research 23:21360–68. doi:10.1007/s11356-016-7376-8.
  • Gao, G., J. Kang, J. Shen, Z. Chen, and W. Chu. 2016b. “Heterogeneous Catalytic Ozonation of Sulfamethoxazole in Aqueous Solution over Composite Iron-Manganese Silicate Oxide.” Ozone: Science & Engineering 39:24–32. doi:10.1080/01919512.2016.1237280.
  • Getoff, N., F. Schwörer, V.M. Markovic, K. Sehested, and S.O. Nielsen. 1971. “Pulse Radiolysis of Oxalic Acid and Oxalates.” The Journal of Physical Chemistry 75:749–55.
  • Gül, Ş., Ö. Özcan, and O. Erbatur. 2007. “Ozonation of C.I. Reactive Red 194 and C.I. Reactive Yellow 145 in Aqueous Solution in the Presence of Granular Activated Carbon.” Dyes and Pigments 75:426–31. doi:10.1016/j.dyepig.2006.06.018.
  • Hoigné, J., and H. Bader. 1983a. “Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water—I Non-Dissociating Organic Compounds.” Water Research 17:173–83.
  • Hoigné, J., and H. Bader. 1983b. “Rate Constants of Reactions of Ozone with Organic and Inorganic Compounds in Water—II. Dissociating Organic Compounds.” Water Research 17:185–94.
  • Huang, R., H. Yan, L. Li, D. Deng, Y. Shu, and Q. Zhang. 2011. “Catalytic Activity of Fe/SBA-15 for Ozonation of Dimethyl Phthalate in Aqueous Solution.” Applied Catalysis B: Environmental 106:264–71. doi:10.1016/j.apcatb.2011.05.041.
  • Jans, U., and J. Hoigné. 1998. “Activated Carbon and Carbon Black Catalyzed Transformation of Aqueous Ozone into OH-Radicals.” Ozone: Science & Engineering 20:67–90. doi:10.1080/01919519808547291.
  • Kasprzyk-Hordern, Barbara, Maria Ziółek, and Jacek Nawrocki. 2003. “Catalytic Ozonation and Methods of Enhancing Molecular Ozone Reactions in Water Treatment.” Applied Catalysis B: Environmental 46:639–69. doi:10.1016/s0926-3373(03)00326-6.
  • Legube, B., and N. Karpel Vel Leitner. 1999. “Catalytic Ozonation: A Promising Advanced Oxidation Technology for Water Treatment.” Catalysis Today 53:61–72.
  • Li, L., W. Ye, Q. Zhang, F. Sun, P. Lu, and X. Li. 2009a. “Catalytic Ozonation of Dimethyl Phthalate over Cerium Supported on Activated Carbon.” Journal of Hazardous Materials 170:411–16. doi:10.1016/j.jhazmat.2009.04.081.
  • Li, L., W. Zhu, L. Chen, P. Zhang, and Z. Chen. 2005. “Photocatalytic Ozonation of Dibutyl Phthalate over TiO2 Film.” Journal of Photochemistry and Photobiology A: Chemistry 175:172–77. doi:10.1016/j.jphotochem.2005.01.020.
  • Li, L., W. Zhu, P. Zhang, Q. Zhang, and Z. Zhang. 2006a. “AC/O3-BAC Processes for Removing Refractory and Hazardous Pollutants in Raw Water.” Journal of Hazardous Materials 135:129–33. doi:10.1016/j.jhazmat.2005.11.045.
  • Li, L., W. Zhu, P. Zhang, Z. Zhang, H. Wu, and W. Han. 2006b. “Comparison of AC/O3-BAC and O3-BAC Processes for Removing Organic Pollutants in Secondary Effluent.” Chemosphere 62:1514–22. doi:10.1016/j.chemosphere.2005.06.043.
  • Li, X., Q. Zhang, L. Tang, P. Lu, F. Sun, and L. Li. 2009b. “Catalytic Ozonation of P-Chlorobenzoic Acid by Activated Carbon and Nickel Supported Activated Carbon Prepared from Petroleum Coke.” Journal of Hazardous Materials 163:115–20. doi:10.1016/j.jhazmat.2008.06.068.
  • Liu, Z., J. Ma, Y. Cui, L. Zhao, and B. Zhang. 2011. “Factors Affecting the Catalytic Activity of Multi-Walled Carbon Nanotube for Ozonation of Oxalic Acid.” Separation and Purification Technology 78:147–53. doi:10.1016/j.seppur.2011.01.034.
  • Loeb, Barry L. 2017. “Forty Years of Advances in Ozone Technology. A Review of Ozone: Science & Engineering.” Ozone: Science & Engineering 40:3–20. doi:10.1080/01919512.2017.1383129.
  • Lu, S., Y. Liu, L. Feng, Z. Sun, and L. Zhang. 2017. “Characterization of Ferromagnetic Sludge-Based Activated Carbon and Its Application in Catalytic Ozonation of P-Chlorobenzoic Acid.” Environmental Science and Pollution Research 25:5086–94. doi:10.1007/s11356-017-8680-7.
  • Lü, X., Q. Zhang, W. Yang, X. Li, L. Zeng, and L. Li. 2015. “Catalytic Ozonation of 2,4-Dichlorophenoxyacetic Acid over Novel Fe–Ni/AC.” RSC Advances 5:10537–45. doi:10.1039/c4ra11610k.
  • Marissa, Aguilar, C., Julia L. Rodríguez, Isaac Chairez, Hugo Tiznado, and Tatyana Poznyak. 2016. “Naphthalene Degradation by Catalytic Ozonation Based on Nickel Oxide: Study of the Ethanol as Cosolvent.” Environmental Science and Pollution Research 24:25550–60. doi:10.1007/s11356-016-6134-2.
  • Mousavi, Seyedeh, Maryam Seyed, Reza Dehghanzadeh, and Seyedeh Masoumeh Ebrahimi. 2017. “Comparative Analysis of Ozonation (O3) and Activated Carbon Catalyzed Ozonation (ACCO) for Destroying Chlorophyll A and Reducing Dissolved Organic Carbon from A Eutrophic Water Reservoir.” Chemical Engineering Journal 314:396–405. doi:10.1016/j.cej.2016.11.159.
  • Muňiz, J., J.E. Herrero, and A.B. Fuertes. 1998. “Treatments to Enhance the SO2 Capture by Activated Carbon Fibres.” Applied Catalysis B: Environmental 18:171–79.
  • Oh, B. S., S. J. Song, E. T. Lee, H. J. Oh, and J. W. Kang. 2004. “Catalyzed Ozonation Process with GAC and Metal Doped-GAC for Removing Organic Pollutants.” Water Science & Technology 49:45–49.
  • Oturan, Mehmet A., Jose Peiroten, Pascal Chartrin, and Aurel J Acher. 2000. “Complete Destruction of P-Nitrophenol in Aqueous Medium by Electro-Fenton Method.” Environmental Science & Technology 34:3474–79. doi:10.1021/es990901b.
  • Qin, H., H. Chen, X. Zhang, G. Yang, and Y. Feng. 2014. “Efficient Degradation of Fulvic Acids in Water by Catalytic Ozonation with CeO2/AC.” Journal of Chemical Technology & Biotechnology 89:1402–09. doi:10.1002/jctb.4222.
  • Sanchez-Polo, M., U. Von Gunten, and J. Rivera-Utrilla. 2005. “Efficiency of Activated Carbon to Transform Ozone into •OH Radicals: Influence of Operational Parameters.” Water Research 39:3189–98. doi:10.1016/j.watres.2005.05.026.
  • Shafeeyan, Mohammad Saleh, Wan Mohd Ashri Wan Daud, Amirhossein Houshmand, and Ahmad Shamiri. 2010. “A Review on Surface Modification of Activated Carbon for Carbon Dioxide Adsorption.” Journal of Analytical and Applied Pyrolysis 89:143–51. doi:10.1016/j.jaap.2010.07.006.
  • Sun, Q., L. Li, H. Yan, X. Hong, K. S. Hui, and Z. Pan. 2014. “Influence of the Surface Hydroxyl Groups of MnOx/SBA-15 on Heterogeneous Catalytic Ozonation of Oxalic Acid.” Chemical Engineering Journal 242:348–56. doi:10.1016/j.cej.2013.12.097.
  • Wang, J., and Z. Bai. 2017. “Fe-Based Catalysts for Heterogeneous Catalytic Ozonation of Emerging Contaminants in Water and Wastewater.” Chemical Engineering Journal 312:79–98. doi:10.1016/j.cej.2016.11.118.
  • Wang, S., X. Wang, J. Chen, R. Qu, and Z. Wang. 2017. “Removal of the UV Filter Benzophenone-2 in Aqueous Solution by Ozonation: Kinetics, Intermediates, Pathways and Toxicity.” Ozone: Science & Engineering 40:122–32. doi:10.1080/01919512.2017.1398072.
  • Yan, H., P. Lu, Z. Pan, X. Wang, Q. Zhang, and L. Li. 2013. “Ce/SBA-15 as a Heterogeneous Ozonation Catalyst for Efficient Mineralization of Dimethyl Phthalate.” Journal of Molecular Catalysis A: Chemical 377:57–64. doi:10.1016/j.molcata.2013.04.032.
  • Zaror, Claudio A. 1997. “Enhanced Oxidation of Toxic Effluents Using Simultaneous Ozonation and Activated Carbon Treatment.” Journal of Chemical Technology & Biotechnology 70:21–28.
  • Zazo, J. A., A. F. Fraile, A. Rey, A. Bahamonde, J. A. Casas, and J. J. Rodriguez. 2009. “Optimizing Calcination Temperature of Fe/Activated Carbon Catalysts for CWPO.” Catalysis Today 143:341–46. doi:10.1016/j.cattod.2009.01.032.
  • Zhao, L., Z. Sun, and J. Ma. 2009a. “Novel Relationship between Hydroxyl Radical Initiation and Surface Group of Ceramic Honeycomb Supported Metals for the Catalytic Ozonation of Nitrobenzene in Aqueous Solution.” Environmental Science & Technology 43:4157–63. doi:10.1021/es900084w.
  • Zhao, L., Z. Sun, J. Ma, and H. Liu. 2009b. “Enhancement Mechanism of Heterogeneous Catalytic Ozonation by Cordierite-Supported Copper for the Degradation of Nitrobenzene in Aqueous Solution.” Environmental Science & Technology 43:2047–53. doi:10.1021/es803125h.
  • Zhao, Y., G. Yu, S. Chen, S. Zhang, B. Wang, J. Huang, S. Deng, and Y. Wang. 2017. “Ozonation of Antidepressant Fluoxetine and Its Metabolite Product Norfluoxetine: Kinetics, Intermediates and Toxicity.” Chemical Engineering Journal 316:951–63. doi:10.1016/j.cej.2017.02.032.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.