Publication Cover
Ozone: Science & Engineering
The Journal of the International Ozone Association
Volume 41, 2019 - Issue 2
479
Views
7
CrossRef citations to date
0
Altmetric
Original Article

Prediction of Bromate Removal in Drinking Water Using Artificial Neural Networks

, , & ORCID Icon
Pages 118-127 | Received 28 Mar 2018, Accepted 08 Aug 2018, Published online: 07 Sep 2018

References

  • Ahmed, A.A.M. 2017. “Prediction of Dissolved Oxygen in Surma River by Biochemical Oxygen Demand Using the Artificial Neural Networks (Anns).” Journal of King Saud University- Engineering Sciences 29: 151–58. doi: 10.1016/j.jksues.2014.05.001
  • Ali, I., O.M.L. Alharbi, Z.A. Alothman, A.Y. Badjah, A. Alwarthan, and A.A. Basheer. 2018a. “Artificial Neural Network Modeling of Amino Black Dye Sorption on Iron Composite Nanomaterial: Kinetic and Thermodynamic Studies.” Journal of Molecular Liquids 250: 1–8. doi: 10.1016/j.molliq.2017.11.163
  • Ali, J.B., T. Hamdi, N. Fnaiech, V.D. Costanzo, F. Farhat, and J.M. Ginoux. 2018b. “Continuous Blood Glucose Level Prediction of Type I Diabetes Based on Artificial Neural Network.” Biocybernetis and Biomedical Engineering 1–14. doi: 10.1016/j.bbe.2018.06.005.
  • Bao, M.L., O. Griffini, D. Santianni, K. Barbieri, D. Burrini, and F. Pantani. 1999. “Removal of Bromate Ion from Water Using Granular Activated Carbon.” Water Research 33 (13):2959–70. doi:10.1016/S0043-1354(99)00015-9.
  • Brahima, S., C. Boztepe, A. Kunkul, and M. Yuceer. 2017. “Modeling of Drug Release Behavior of pH and Temperature Sensitive Poly(Nipaam-Co-Aac) IPN Hydrogels Using Response Surface Methodology and Artificial Neural Networks.” Materials Science and Engineering C 75: 425–32. doi: 10.1016/j.msec.2017.02.081
  • Brooks, Hadley., and Nick Tucker. 2015. “Electrospinning Predictions Using Artificial Neural Networks.” Polymer 58: 22–29. doi: 10.1016/j.polymer.2014.12.046
  • Burry, L.D., B. Marconetto, M. Somoza, P. Palacio, M. Trivi, and H. D’Antoni. 2018. “Ecosystem Modeling Using Artificial Neural Networks: An Archeological Tool.” Journal of Archeological Science: Reports 18: 739–46. doi: 10.1016/j.jasrep.2017.07.013
  • Chen, F., Z. Zhang, Q. Li, and H. Wang. 2012. “Adsorption of Bromate and Competition from Oxyanions on Cationic Surfactant-Modified Granular Activated Carbon (GAC).” Chemical Engineering Journal 203: 319–25. doi: 10.1016/j.cej.2012.07.047
  • Civelekoğlu, G., N.O. Yigit, E. Diadopolous, and M. Kitis. 2007. “Prediction of Bromate Formation Using Multi-Linear Regression and Artificial Neural Networks.” Ozone:Science&Engineering 29 (5):353–62. doi:10.1080/01919510701549327
  • Csabragi, A., S. Molnar, P. Tanos, and J. Kovacs. 2017. “Application of Neural Networks to the Forecasting of Dissolved Oxygen Content in Hungarian Section of the River Danube.” Ecological Engineering 100: 63–72. doi: 10.1016/j.ecoleng.2016.12.027
  • Dogan, E., B. Sengorur, and R. Koklu. 2009. “Modeling Biological Oxygen Demand of the Melen River in Turkey Using an Artificial Neural Network Technique.” Journal of Environmental Management 90 (2):1229–35. doi:10.1016/j.jenvman.2008.06.004.
  • Fan, M., J. Hu, R. Cao, W. Ruan, and X. Wei. 2018. “A Review on Experimental Design for Pollutants Removal in Water Treatment with the Aid of Artificial Intelligence.” Chemosphere 200: 330–43. doi: 10.1016/j.chemosphere.2018.02.111
  • Farooq, W., H.J. Hong, E.J. Kim, and J.W. Yang. 2012. “Removal of Bromate (Bro−3) from Water Using Cationic Surfactant Modified Powdered Activated Carbon (SM-PAC).” Separation Science and Technology 47 (13):1906–12. doi:10.1080/01496395.2012.664232.
  • Fath, A.H., A. Pouranfard, and P. Foroughizadeh. 2018. “Development of an Artificial Neural Network Model for Prediction of Buble Point Pressure of Crude Oils.” Petroleum 1–11. doi:10.1016/j.petlm.2018.03.009.
  • Gebler, D., K. Szoszkiewicz, and K. Pietruczuk. 2017. “Modeling of River Ecological Status with Macrophytes Using Artificial Neural Networks.” Limnologica 65: 46–54. doi: 10.1016/j.limno.2017.07.004
  • Gebler, D., G. Wiegleb, and K. Szoszkiewicz. 2018. “Integrating River Hydromorphology and Water Quality into Ecological Status Modeling by Artificial Neural Networks.” Water Research 139: 295–405. doi: 10.1016/j.watres.2018.04.016
  • Hagan, T., H.B. Demuth, and M. Beale. 1996. Neural Network Design. Boston, USA: PWS Publishing Company.
  • Hassan, K.Z.A., K.C. Bower, and C.M. Miller. 2003. “Numerical Simulation of Bromate Formation during Ozonation of Bromide.” Journal of Environmental Engineering -ASCE 129 (11):991–98. doi:10.1061/(ASCE)0733-9372(2003)129:11(991)
  • Haykin, S. 1999. Neural Networks, a Comprehensive Foundation. USA: Prentice Hall.
  • Huang, W.J. 2004. “Adsorption/Reduction of Bromate from Drinking Water Using GAC: Effects on Carbon Characteristics and Long-Term Pilot Study.” Water SA 30 (3):369–76. doi:10.4314/wsa.v30i3.5086
  • Hunter, P.R. 2003. “Drinking Water and Diarrhoeal Disease Due to Escherichia Coli.” Journal of Water Health 1 (2):65–72. doi:10.2166/wh.2003.0008
  • Jarvis, P., S.A. Parsons, and R. Smith. 2007. “Modeling Bromate Formation During Ozonation.” Ozone: Science& Engineering 29 (6):429–42. doi:10.1080/01919510701643732
  • Karadurmus, E., H Akyazı, E. Göz, and M. Yüceer. 2017. “Prediction of Characteristic Properties of Crude Oil Blending with ANN.” Journal of Dispersion Science and Technology 39:1236–43. doi:10.1080/01932691.2017.1391702
  • Kessler, T., E.R. Sacia, A.T. Bell, and J.H. Mack. 2017. “Artificial Neural Network Based Predictions of Cetane Number for Furanic Biofuel Additives.” Fuel 206: 171–79. doi: 10.1016/j.fuel.2017.06.015
  • Kirisits, M.J., V.L. Snoeyink, and J.C. Kruithof. 2000. “The Reduction of Bromate by Granular Activated Carbon.” Water Research 34 (17):4250–60. doi:10.1016/S0043-1354(00)00189-5.
  • Kulkarni, P., and S. Chellam. 2010. “Disinfection By-Product Formation following Chlorination of Drinking Water: Artificial Neural Network Models and Changes in Speciation with Treatment.” Science of the Total Environment 408 (19):4202–10. doi:10.1016/j.scitotenv.2010.05.040.
  • Legube, B., B. Parinet, K. Gelinet, F. Berne, and J Croue. 2004. “Modeling of Bromate Formation by Ozonation of Surface Waters in Drinking Water Treatment.” Water Research 38 (8):2185–95. doi:10.1016/j.watres.2004.01.028.
  • Lu, F., Z. Chen, W. Liu, and H. Shao. 2016. “Modeling Chloropyll-A Concentrations Using an Artificial Neural Network for Precisely Eco-Restoring Lake Basin.” Ecological Engineering 95: 422–29. doi: 10.1016/j.ecoleng.2016.06.072
  • Matos, C.T., S. Velizarov, M.M. Reis, and J. Crespo. 2008. “Removal of Bromate from Drinking Water Using the Ion Exchange Membrane Bioreactor Concept.” Environmental Science and Technology 42 (20):7702–08. doi:10.1021/es801176f.
  • Mulero, A., I. Cachadina, and J.O. Valderrama. 2017a. “Artificial Neural Network for the Correlation and Prediction of Surface Tension of Alcohols.” Fluid Phase Equilibria 451: 60–67. doi: 10.1016/j.fluid.2017.07.022
  • Mulero, A., M. Pierantozzi, I. Cachadina, and G. D. Nicola. 2017b. “An Artificial Neural Network for the Surface Tension of Alcohols.” Fluid Phase Equilibria 449: 28–40. doi: 10.1016/j.fluid.2017.06.003
  • Naushad, M., M.R. Khan, Z.A. Alothman, I. AlSohaimi, F. Rodriguez-Rienoso, T.M Turki, and R. Ali. 2015. “Removal of BrO3− from Drinking Water Samples Using Newly Developed Agricultural Waste-Based Activated Carbon and Its Determination by Ultra-Performance Liquid Chromotgraphy-Mass Spectrometry.” Environmental Science and Pollution Research 22 (20):15853–65. doi:10.1007/s11356-015-4786-y.
  • Percival, S.L., R.M. Chalmers, M. Embrey, P.R. Hunter, J. Sellwood, and P. Wyn-Jones. 2004. “Protozoa.” In Microbiology of Waterborne Diseases, edited by P. Steven, Y. Marylynn, W. David, C. Rachel, and G. Nicholas, 221–325. California, USA: Elsevier Academic Press.
  • Qaderi, F., and E. Babanezhad. 2017. “Prediction of Groundwater Remediation Costs for Drinking Use Based on Quality Water Resource, Using Artificial Neural Network.” Journal of Cleaner Production 161:840–49. doi: 10.1016/j.jclepro.2017.05.187.
  • Sadiq, R., and M.J. Rodriguez. 2004. “Disinfection By-Products in Drinking Water and Predictive Models for Their Occurence: A Review.” Total Environment 321 (1–3):21–46. doi:10.1016/j.scitotenv.2003.05.001.
  • Salari, M., E.S. Shadid, S. H. Afzali, M. Ehteshami, G.O. Conti, A. Derakhshan, and S.N. Sheibani. 2018. “Quality Assessment and Artificial Neural Networks Modeling for Characterization of Chemical and Physical Parameters of Potable Water.” Food and Chemical Toxicology 118: 212–19. doi: 10.1016/j.fct.2018.04.036
  • Santosh, T., and D. Ramesh. 2018. “Artificial Neural Network Based on Prediction of Malaria Abundances Using Big Data.” Clinical Epidemiology and Global Health 1–6. doi: 10.1016/j.cegh.2018.03.001.
  • Singh, K., A. Basant, A. Malik, and G. Jain. 2009. “Artificial Neural Network Modeling of the River Water Quality-A Case Study.” Ecological Modeling 220 (6):888–95. doi:10.1016/j.ecolmodel.2009.01.004.
  • Sohn, J., G.L. Amy, J.W. Cho, Y. Lee, and Y. Yoon. 2004. “Disinfectant Decay and Disinfection by Products Formation Model Development: Chlorination and Ozonation by Products.” Water Research 38 (10):2461–78. doi:10.1016/j.watres.2004.03.009.
  • Sunphorka, S., B. Chalermsinsuwan, and P. Piumsomboom. 2017. “Artificial Neural Network Model for Prediction of Kinetic Parameters of Biomass Pyrolysis from Its Constituents.” Fuel 193: 142–58. doi: 10.1016/j.fuel.2016.12.046
  • Wagh, V., D. Panaskar, A. Muley, S. Mukate, and S. Gaikwad. 2018. “Neural Network Modeling for Nitrate Concentration in Groundwater of Kadava River Basin, Nashik, Maharasthara, India.” Groundwater for Sustainable Development doi: 10.1007/s40808-017-0290-3.
  • Wang, L., J. Zhang, J. Liu, H. He, M. Yang, J. Yu, Z. Ma, and F. Jiang. 2010. “Removal of Bromate Ion Using Powdered Activated Carbon.” Journal of Environmental Sciences 22 (12):1846–53. doi:10.1016/S1001-0742(09)60330-2.
  • West, D.M., R. Mu, S. Gamagedara, Y. Ma, C. Adams, T. Eicholz, J.G. Burken, and H. Shi. 2015. “Simultaneous Detection of Perchlorate and Bromate Using Rapid High-Performance Ion Exchange Chromotgraphy-Tandem Mass Spectrometry and Perchlorate Removal in Drinking Water.” Environmental Science and Pollution Research 22 (11):8594–602. doi:10.1007/s11356-014-4028-8.
  • Wu, X., Q. Tang, D. Xu, Y. Zhong, K. Luo, X. Li, H. Chen, and G. Zeng. 2013. “Simultaneous Adsorption/Reduction of Bromate by Nanoscale Zerovalent Iron Supportedon Modified Activated Carbon.” Industrial&Engineering Chemistry Research 52 (35):12574–81. doi:10.1021/ie4009524.
  • Wu, B., S. Hang, K.G. Shin and W. Lu. 2018. “Application of Artificial Neural Networks in Design of Lithium-Ion Batteries.” Journal of Power Sources 395:128–36. doi:10.1016/j.jpowsour.2018.05.040.
  • Xiao, J., Q. Yue, B. Gao, Y. Sun, J. Kong, Y. Gao, Q. Li, and Y. Wang. 2014. “Performance of Activated Carbon/Nanoscale Zero-Valent Iron for Removal of Trihalomethanes (Thms) at Infinitesimal Concentration in Drinking Water.” Chemical Engineering Journal 253:63–72. doi: 10.1016/j.cej.2014.05.030
  • Xiao, Q., S. Yu, L. Li, T. Wang, X. Liao, and Y. Ye. 2017a. “An Overview of Advanced Reduction Process for Bromate Removal from Drinking Water: Reducing Agents, Activation Methods, Application and Mechanisms.” Journal of Hazardous Materials 324:230–40. doi: 10.1016/j.jhazmat.2016.10.053
  • Xiao, Q., R. Wang, S. Yu, P. Yi, and L. Li. 2017b. “Influence of UV Lamp Sulfur (IV) Concentration and pH on Bromate Degradation in UV/Sulfite Systems: Mechanisms and Applications.” Water Research 111:288–96. doi: 10.1016/j.watres.2017.01.018
  • Xiao, Q., Y. Ren, and S. Yu. 2017c. “Pilot Study on Bromate Reduction from Drinking Water by UV/Sulfite Systems: Economic Cost Comparisons, Effects of Environmental Parameters and Mechanisms.” Chemical Engineering Journals 331:1203–10. doi: 10.1016/j.cej.2017.08.071
  • Zhang, Y., Q. Wu, J. Zhang, and X. Yang. 2015. “Removal of Bromide and Bromate from Drinking Water Using Granular Activated Carbon.” Journal of Water Health 13 (1):73–78. doi:10.2166/wh.2014.084.
  • Zhi, L. H., P. Hu, L.X. Chen, and G. Zhao. 2018. “Viscosity Prediction for Six Pure Refrigerants Using Different Artificial Neural Networks.” International Journal of Refrigeration 88: 432–40. doi: 10.1016/j.ijrefrig.2018.02.011

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.