Publication Cover
Ozone: Science & Engineering
The Journal of the International Ozone Association
Volume 45, 2023 - Issue 4
124
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Using Ti/Ti0.7Ru0.3O2 anode-type with a Flow Cell System for the Electrochemical Treatment of a Tannery Wastewater

, , , &
Pages 374-386 | Received 28 Sep 2021, Accepted 23 Jul 2022, Published online: 18 Sep 2022

References

  • Andrade, L. S., L. A. M. Ruotolo, R. C. Rocha-Filho, N. Bocchi, S. R. Biaggio, J. Iniesta, V. García-Garcia, and V. Montiel. 2007. “On the Performance of Fe and Fe,F Doped Ti–Pt/PbO2 Electrodes in the Electrooxidation of the Blue Reactive 19 Dye in Simulated Textile Wastewater.” Chemosphere 66 (11): 2035–43. doi:10.1016/j.chemosphere.2006.10.028.
  • Aquino, J. M., R. C. Rocha-Filho, M. A. Rodrigo, C. Sáez, and P. Cañizares. 2013. “Electrochemical Degradation of the Reactive Red 141 Dye Using a boron-doped Diamond Anode.” Water, Air, & Soil Pollution 224 (1): 1–10. doi:10.1007/s11270-012-1397-9.
  • Aquino, J. M., R. C. Rocha-Filho, L. A. M. Ruotolo, N. Bocchi, and S. R. Biaggio. 2014. “Electrochemical Degradation of a Real Textile Wastewater Using β-PbO2 and DSA® Anodes.” Chemical Engineering Journal 251:138–45. doi: 10.1016/j.cej.2014.04.032
  • Baddouh, A., E. Amaterz, B. El-Ibrahimi, M. M. Rguitti, M. Errami, V. Tkach, and L. Bazzi. 2019. “Enhanced Electrochemical Degradation of a Basic Dye with Ti/Ru0.3Ti0.7O2 Anode Using flow-cell.” Desalination and Water Treatment 139:352–59. doi: 10.5004/dwt.2019.23274
  • Baddouh, A., G. G. Bessegato, M. M. Rguiti, B. El Ibrahimi, L. Bazzi, M. Hilali, and M. V. B. Zanoni. 2018. “Electrochemical Decolorization of Rhodamine B Dye: Influence of Anode Material, Chloride Concentration and Current Density.” Journal of Environmental Chemical Engineering 6 (2): 2041–47. doi:10.1016/j.jece.2018.03.007.
  • Baddouh, A., B. El Ibrahimi, E. Amaterz, M. M. Rguiti, L. Bazzi, and M. Hilali. 2019. “Removal of the Rhodamine B Dye at Ti/Ru0.3Ti0.7O2 Anode Using Flow Cell System.” Journal of Chemistry 2019:1424797. doi: 10.1155/2019/1424797
  • Baddouh, A., B. El Ibrahimi, M. M. Rguitti, E. Mohamed, S. Hussain, and L. Bazzi. 2020. “Electrochemical Removal of Methylene Bleu Dye in Aqueous Solution Using Ti/RuO2–IrO2 and SnO2 Electrodes.” Separation Science and Technology 55 (10): 1852–61. doi:10.1080/01496395.2019.1608244.
  • Baddouh, A., M. M. Rguiti, B. El Ibrahimi, S. Hussain, M. Errami, V. Tkach, L. Bazzi, and M. Hilali. 2019. “Anodic Oxidation of Methylene Blue Dye from Aqueous Solution Using SnO2 Electrode.” Iranian Journal of Chemistry and Chemical Engineering (IJCCE) 38 (5): 175–84.
  • Brillas, E., and C. A. Martínez-Huitle. 2015. “Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods. An Updated Review.” Applied Catalysis B: Environmental 166-167:603–43. doi: 10.1016/j.apcatb.2014.11.016
  • Catanho, M., G. R. P. Malpass, and A. D. J. Motheo. 2006. “Evaluation of Electrochemical and Photoelectrochemical Methods for the Degradation of Three Textile Dyes.” Quimica Nova 29:983–89. doi: 10.1590/S0100-40422006000500018
  • Catanho, M., G. R. Malpass, and A. J. Motheo. 2006. “Photoelectrochemical Treatment of the Dye Reactive Red 198 Using DSA® Electrodes.” Applied Catalysis B: Environmental 62 (3–4): 193–200. doi:10.1016/j.apcatb.2005.07.011.
  • Chen, G. 2004. “Electrochemical Technologies in Wastewater Treatment.” Separation and Purification Technology 38 (1): 11–41. doi:10.1016/j.seppur.2003.10.006.
  • Costa, C. R., F. Montilla, E. Morallón, and P. Olivi. 2009. “Electrochemical Oxidation of Acid Black 210 Dye on the boron-doped Diamond Electrode in the Presence of Phosphate Ions: Effect of Current Density, pH, and Chloride Ions.” Electrochimica Acta 54 (27): 7048–55. doi:10.1016/j.electacta.2009.07.027.
  • Del Río, A., J. Fernández, J. Molina, J. Bonastre, and F. Cases. 2011. “Electrochemical Treatment of a Synthetic Wastewater Containing a Sulphonated Azo Dye. Determination of Naphthalenesulphonic Compounds Produced as Main by-products.” Desalination 273 (2–3): 428–35. doi:10.1016/j.desal.2011.01.070.
  • Drever, J. 1997. The Geochemistry of Natural Waters: Surface and Groundwater Environments. Prentice Hall. Eaglewood Cliffs, New Jersy, USA.
  • Fan, L., Y. Zhou, W. Yang, G. Chen, and F. Yang. 2008. “Electrochemical Degradation of Aqueous Solution of Amaranth Azo Dye on ACF under Potentiostatic Model.” Dyes and Pigments 76 (2): 440–46. doi:10.1016/j.dyepig.2006.09.013.
  • Federation, W., and A. Association. 1999. “Standard Methods for the Examination of Water and Wastewater Standard Methods for the Examination of Water and Wastewater.” Public Health 51 (1): 940–940.
  • Feng, C., N. Sugiura, S. Shimada, and T. Maekawa. 2003. “Development of a High Performance Electrochemical Wastewater Treatment System.” Journal of Hazardous Materials 103 (1–2): 65–78. doi:10.1016/S0304-3894(03)00222-X
  • Fernandes, A., A. Morao, M. Magrinho, A. Lopes, and I. Goncalves. 2004. “Electrochemical Degradation of C.I. Acid Orange 7.” Dyes and Pigments 61 (3): 287–96. doi:10.1016/j.dyepig.2003.11.008.
  • Hastie, J., D. Bejan, M. Teutli-Leon, and N. J. Bunce. 2006. “Electrochemical Methods for Degradation of Orange II (Sodium 4-(2-hydroxy-1-naphthylazo) Benzenesulfonate).” Industrial & Engineering Chemistry Research 45 (14): 4898–904. doi:10.1021/ie060310b.
  • Hussain, S., J. R. Steter, S. Gul, and A. J. Motheo. 2017. “Photo-assisted Electrochemical Degradation of Sulfamethoxazole Using a Ti/Ru0.3Ti0.7O2 Anode: Mechanistic and Kinetic Features of the Process.” Journal of Environmental Management 201:153–62. doi: 10.1016/j.jenvman.2017.06.043
  • Kaur, R., J. P. Kushwaha, and N. Singh. 2018. “Electro-oxidation of Ofloxacin Antibiotic by Dimensionally Stable Ti/RuO2 Anode: Evaluation and Mechanistic Approach.” Chemosphere 193:685–94. doi: 10.1016/j.chemosphere.2017.11.065
  • Kenova, T. A., G. V. Kornienko, O. A. Golubtsova, V. L. Kornienko, and N. G. Maksimov. 2018. “Electrochemical Degradation of Mordant Blue 13 Azo Dye Using boron-doped Diamond and Dimensionally Stable Anodes: Influence of Experimental Parameters and Water Matrix.” Environmental Science and Pollution Research 25 (30): 30425–40. doi:10.1007/s11356-018-2977-z.
  • Khan, M. F., L. Yu, G. Achari, and J. H. Tay. 2019. “Degradation of Sulfolane in Aqueous Media by Integrating Activated Sludge and Advanced Oxidation Process.” Chemosphere 222:1–8. doi: 10.1016/j.chemosphere.2019.01.097
  • Khosravi, R., H. Hossini, M. Heidari, M. Fazlzadeh, H. Biglari, A. Taghizadeh, and B. Barikbin. 2017. “Electrochemical Decolorization of Reactive Dye from Synthetic Wastewater by Mono-Polar Aluminum Electrodes System.” Int. J. Electrochem. Sci 12:4745–55. doi: 10.20964/2017.06.75.
  • Kong, W., B. Wang, H. Ma, and L. Gu. 2006. “Electrochemical Treatment of Anionic Surfactants in Synthetic Wastewater with three-dimensional Electrodes.” Journal of Hazardous Materials 137 (3): 1532–37. doi:10.1016/j.jhazmat.2006.04.037.
  • Kumar, S., S. Singh, and V. C. Srivastava. 2015. “Electro-oxidation of Nitrophenol by Ruthenium Oxide Coated Titanium Electrode: Parametric, Kinetic and Mechanistic Study.” Chemical Engineering Journal 263:135–43. doi: 10.1016/j.cej.2014.11.051
  • Lin, S. H., C. T. Shyu, and M. C. Sun. 1998. “Saline Wastewater Treatment by Electrochemical Method.” Water Research 32 (4): 1059–66. doi:10.1016/S0043-1354(97)00327-8.
  • Liu, M., H. Xia, W. Lu, T. Xu, Z. Zhu, and W. Chen. 2016. “Electrocatalytic Degradation of Organic Contaminants Using Carbon Fiber Coupled with Cobalt Phthalocyanine Electrode.” Journal of Applied Electrochemistry 46 (5): 583–92. doi:10.1007/s10800-016-0939-z.
  • Mabbott, G. A. 1983. “An Introduction to Cyclic Voltammetry.” Journal of Chemical Education 60 (9): 697. doi:10.1021/ed060p697
  • Malpass, G., D. Miwa, A. Miwa, S. Machado, and A. Motheo. 2009. “Study of photo-assisted Electrochemical Degradation of Carbaryl at Dimensionally Stable Anodes (DSA®).” Journal of Hazardous Materials 167 (1–3): 224–29. doi:10.1016/j.jhazmat.2008.12.109.
  • Martínez-Huitle, C. A., and E. Brillas. 2009. “Decontamination of Wastewaters Containing Synthetic Organic Dyes by Electrochemical Methods: A General Review.” Applied Catalysis B: Environmental 87 (3): 105–45. doi:10.1016/j.apcatb.2008.09.017.
  • Martinez-Huitle, C. A., and S. Ferro. 2006. “Electrochemical Oxidation of Organic Pollutants for the Wastewater Treatment: Direct and Indirect Processes.” Chemical Society Reviews 35 (12): 1324–40. doi:10.1039/B517632H.
  • Martínez-Huitle, C., S. Ferro, and A. De Battisti. 2005. “Electrochemical Incineration in the Presence of Halides.” Electrochemical and Solid-State Letters 8 (11): D35. doi:10.1149/1.2042628.
  • Martínez-Huitle, C. A., and M. Panizza. 2018. “Electrochemical Oxidation of Organic Pollutants for Wastewater Treatment.” Current Opinion in Electrochemistry 11:62–71. doi: 10.1016/j.coelec.2018.07.010
  • Martínez-Huitle, C. A., M. A. Rodrigo, I. Sirés, and O. Scialdone. 2015. “Single and Coupled Electrochemical Processes and Reactors for the Abatement of Organic Water Pollutants: A Critical Review.” Chemical Reviews 115 (24): 13362–407. doi:10.1021/acs.chemrev.5b00361.
  • Mondal, S. 2008. “Methods of Dye Removal from Dye House Effluent—An Overview.” Environmental Engineering Science 25 (3): 383–96. doi:10.1089/ees.2007.0049.
  • Morsi, M., A. Al-Sarawy, and W. S. El-Dein. 2011. “Electrochemical Degradation of Some Organic Dyes by Electrochemical Oxidation on a Pb/PbO2 Electrode.” Desalination and Water Treatment 26 (1–3): 301–08. doi:10/5004/dwt.2011.1926.
  • Neto, S. A., and A. De Andrade. 2009. “Electrooxidation of Glyphosate Herbicide at Different DSA® Compositions: PH, Concentration and Supporting Electrolyte Effect.” Electrochimica Acta 54 (7): 2039–45. doi:10.1016/j.electacta.2008.07.019.
  • Oliveira, G. A. R., E. R. A. Ferraz, F. M. D. Chequer, M. D. Grando, J. P. F. Angeli, M. S. Tsuboy, J. C. Marcarini, M. S. Mantovani, M. E. Osugi, T. M. Lizier, et al. 2010. “Chlorination Treatment of Aqueous Samples Reduces, but Does Not Eliminate, the Mutagenic Effect of the Azo Dyes Disperse Red 1, Disperse Red 13 and Disperse Orange 1.” Mutation Research/Genetic Toxicology and Environmental Mutagenesis 703 (2): 200–08. doi:10.1016/j.mrgentox.2010.09.001.
  • Oturan, M. A., and J.-J. Aaron. 2014. “Advanced Oxidation Processes in water/wastewater Treatment: Principles and Applications. A Review.” Critical Reviews in Environmental Science and Technology 44 (23): 2577–641. doi:10.1080/10643389.2013.829765.
  • Pletcher, D., and F. C. Walsh. 1990. Industrial Electrochemistry. New York: Springer Science & Business Media.
  • Pupo, M. M. S., L. S. D. Costa, A. C. Figueiredo, R. S. D. Silva, F. G. C. Cunha, K. I. B. Eguiluz, and G. R. Salazar-Banda. 2013. “Photoelectrocatalytic Degradation of Indanthrene Blue Dye Using Ti/Ru-based Electrodes Prepared by a Modified Pechini Method.” J. Braz. Chem. Soc 23:3. doi: 10.5935/0103-5053.20130062
  • Rajkumar, D., B. J. Song, and J. G. Kim. 2007. “Electrochemical Degradation of Reactive Blue 19 in Chloride Medium for the Treatment of Textile Dyeing Wastewater with Identification of Intermediate Compounds.” Dyes and Pigments 72 (1): 1–7. doi:10.1016/j.dyepig.2005.07.015.
  • Rguiti, M., A. Baddouh, E. Amaterz, A. EL Asbahani, L. Bazzi, M. Hilali, and L. Bazzi. 2018. “Electrodegradation Study of Phenolic Compounds Containing in Olive Mill Wastewaters of the Chiadma Region.” International Journal of Current Research 10 (3): 67388–95.
  • Rozas, O., C. Vidal, C. Baeza, W. F. Jardim, A. Rossner, and H. D. Mansilla. 2016. “Organic Micropollutants (Omps) in Natural Waters: Oxidation by UV/H2O2 Treatment and Toxicity Assessment.” Water Research 98:109–18. doi: 10.1016/j.watres.2016.03.069
  • Samarghandi, M. R., A. Dargahi, A. Shabanloo, H. Z. Nasab, Y. Vaziri, and A. Ansari. 2020. “Electrochemical Degradation of Methylene Blue Dye Using a Graphite Doped PbO2 Anode: Optimization of Operational Parameters, Degradation Pathway and Improving the Biodegradability of Textile Wastewater.” Arabian Journal of Chemistry 13 (8): 6847–64. doi:10.1016/j.arabjc.2020.06.038.
  • Sathishkumar, K., M. S. AlSalhi, E. Sanganyado, S. Devanesan, A. Arulprakash, and A. Rajasekar. 2019. “Sequential Electrochemical Oxidation and bio-treatment of the Azo Dye Congo Red and Textile Effluent.” Journal of Photochemistry and Photobiology B: Biology 200:111655. doi: 10.1016/j.jphotobiol.2019.111655
  • Scialdone, O., S. Randazzo, A. Galia, and G. Silvestri. 2009. “Electrochemical Oxidation of Organics in Water: Role of Operative Parameters in the Absence and in the Presence of NaCl.” Water Research 43 (8): 2260–72. doi:10.1016/j.watres.2009.02.014.
  • Singh, S., S. L. Lo, V. C. Srivastava, and A. D. Hiwarkar. 2016. “Comparative Study of Electrochemical Oxidation for Dye Degradation: Parametric Optimization and Mechanism Identification.” Journal of Environmental Chemical Engineering 4 (3): 2911–21. doi:10.1016/j.jece.2016.05.036.
  • Sirés, I., E. Brillas, M. A. Oturan, M. A. Rodrigo, and M. Panizza. 2014. “Electrochemical Advanced Oxidation Processes: Today and Tomorrow. A Review.” Environmental Science and Pollution Research 21 (14): 8336–67. doi:10.1007/s11356-014-2783-1.
  • Solá-Gutiérrez, C., S. Schröder, M. F. San Román, and I. Ortiz. 2019. “PCDD/Fs Traceability during Triclosan Electrochemical Oxidation.” Journal of Hazardous Materials 369:584–92. doi: 10.1016/j.jhazmat.2019.02.066
  • Subedi, B., and K. Kannan. 2015. “Occurrence and Fate of Select Psychoactive Pharmaceuticals and Antihypertensives in Two Wastewater Treatment Plants in New York State, USA.” Science of the Total Environment 514:273–80. doi: 10.1016/j.scitotenv.2015.01.098
  • Tanaka, F., C. Feng, N. Sugiura, and T. Maekawa. 2003. “Electrochemical Removal of Ammonium Ion and Organic Substances from Landfill Leachate.” Japanese Journal of Water Treatment Biology 39(2): 75–84. doi. doi:10.2521/jswtb.39.75.
  • Torres, N. H., B. S. Souza, L. F. R. Ferreira, Á. S. Lima, G. N. Dos Santos, and E. B. Cavalcanti. 2019. “Real Textile Effluents Treatment Using coagulation/flocculation Followed by Electrochemical Oxidation Process and Ecotoxicological Assessment.” Chemosphere 236:124309. doi: 10.1016/j.chemosphere.2019.07.040
  • Trasatti, S. 1987. “Progress in the Understanding of the Mechanism of Chlorine Evolution at Oxide Electrodes.” Electrochimica acta 32 (3): 369–82. doi:10.1016/0013-4686(87)85001-6.
  • Trasatti, S. 1994. “Transition Metal Oxides: Versatile Materials for Electrocatalysis.” The Electrochemistry of Novel Materials 207–95.
  • Vallejo, M., M. F. San Román, I. Ortiz, and A. Irabien. 2015. “Overview of the PCDD/Fs Degradation Potential and Formation Risk in the Application of Advanced Oxidation Processes (Aops) to Wastewater Treatment.” Chemosphere 118:44–56. doi: 10.1016/j.chemosphere.2014.05.077
  • Vlyssides, A., C. Israilides, M. Loizidou, G. Karvouni, and V. Mourafeti. 1997. “Electrochemical Treatment of Vinasse from Beet Molasses.” Water Science and Technology 36 (2–3): 271–78. doi:10.1016/S0273-1223(97)00398-3.
  • Wang, Y.-H., K.-Y. Chan, X. Li, and S. So. 2006. “Electrochemical Degradation of 4-chlorophenol at nickel–antimony Doped Tin Oxide Electrode.” Chemosphere 65 (7): 1087–93. doi:10.1016/j.chemosphere.2006.04.061.
  • Wu, M., G. Zhao, M. Li, L. Liu, and D. Li. 2009. “Applicability of boron-doped Diamond Electrode to the Degradation of chloride-mediated and chloride-free Wastewaters.” Journal of Hazardous Materials 163 (1): 26–31. doi:10.1016/j.jhazmat.2008.06.050.
  • Xin, Y.-Y., L. Zhou, K.-k. Ma, J. Lee, H. Qazi, H.-P. Li, C.-Y. Bao, and Y.-X. Zhou. 2020. “Removal of Bromoamine Acid in Dye Wastewater by gas-liquid Plasma: The Role of Ozone and Hydroxyl Radical.” Journal of Water Process Engineering 37:101457. doi: 10.1016/j.jwpe.2020.101457
  • Yaseen, D., and M. Scholz. 2019. “Textile Dye Wastewater Characteristics and Constituents of Synthetic Effluents: A Critical Review.” International Journal of Environmental Science and Technology 16 (2): 1193–226. doi:10.1007/s13762-018-2130-z.
  • Zanta, C. L. P. S., A. R. De Andrade, and J. F. C. Boodts. 2000. “Electrochemical Behaviour of Olefins: Oxidation at ruthenium–titanium Dioxide and iridium–titanium Dioxide Coated Electrodes.” Journal of Applied Electrochemistry 30 (4): 467–74. doi:10.1023/A:1003942411733.
  • Zhao, H., L. Qian, X. Guan, D. Wu, and G. Zhao. 2016. “Continuous Bulk FeCuC Aerogel with Ultradispersed Metal Nanoparticles: An Efficient 3D Heterogeneous Electro-Fenton Cathode over a Wide Range of pH 3–9.” Environmental Science & Technology 50 (10): 5225–33. doi:10.1021/acs.est.6b00265.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.