2,223
Views
104
CrossRef citations to date
0
Altmetric
Original Articles

Use of nanoparticles for dye adsorption: Review

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 836-847 | Received 04 Sep 2017, Accepted 26 Oct 2017, Published online: 27 Nov 2017

References

  • Gupta, V. K.; Suhas, P. J. M. Application of Low-Cost Adsorbents for Dye Removal – A Review. J. Environ. Manage. 2009, 90, 2313–2342. DOI: 10.1016/j.jenvman.2008.11.017.
  • de Campos Ventura-Camargo, B.; Marin-Morales, M. A. Azo Dyes: Characterization and Toxicity – A review. Text. Light Ind. Sci. Technol. 2013, 2, 85–103.
  • Kyzas, G. Z.; Fu, J.; Matis, K. A. The Change from Past to Future for Adsorbent Materials in Treatment of Dyeing Wastewaters. Materials 2013, 6, 5131–5158. DOI: 10.3390/ma6115131.
  • Ferreira, A. M.; Coutinho, J. A. P.; Fernandes, A. M.; Freire, M. G. Complete Removal of Textile Dyes from Aqueous Media using Ionic-Liquid-Based Aqueous Two-Phase Systems. Sep. Purif. Technol. 2014, 128, 58–66. DOI: 10.1016/j.seppur.2014.02.036.
  • Crini, G. Non-Conventional Low-Cost Adsorbents for Dye Removal: A Review. Bioresour. Technol. 2006, 97, 1061–1085. DOI: 10.1016/j.biortech.2005.05.001.
  • Kyzas, G. Z.; Kostoglou, M. Green Adsorbents for Wastewaters: A Critical Review. Materials 2014, 7, 333–364. DOI: 10.3390/ma7010333.
  • Bhatnagar, A.; Kaczala, F.; Hogland, W.; Marques, M.; Paraskeva, C. A.; Papadakis, V. G.; Sillanpää, M. Valorization of Solid Waste Products from Olive Oil Industry as Potential Adsorbents for Water Pollution Control-A Review. Environ. Sci. Pollut. Res. 2014, 21, 268–298. DOI: 10.1007/s11356-013-2135-6.
  • Bhatnagar, A.; Sillanpää, M.; Witek-Krowiak, A. Agricultural Waste Peels as Versatile Biomass for Water Purification – A Review. Chem. Eng. J. 2015, 270, 244–271. DOI: 10.1016/j.cej.2015.01.135.
  • Rangabhashiyam, S.; Anu, N.; Giri Nandagopal, M. S.; Selvaraju, N. Relevance of Isotherm Models in Biosorption of Pollutants by Agricultural Byproducts. J. Environ. Chem. Eng. 2014, 2, 398–414. DOI: 10.1016/j.jece.2014.01.014.
  • Rangabhashiyam, S.; Anu, N.; Selvaraju, N. Sequestration of Dye from Textile Industry Wastewater using Agricultural Waste Products as Adsorbents. J. Environ. Chem. Eng. 2013, 1, 629–641. DOI: 10.1016/j.jece.2013.07.014.
  • Tran, V. S.; Ngo, H. H.; Guo, W.; Zhang, J.; Liang, S.; Ton-That, C.; Zhang, X. Typical Low Cost Biosorbents for Adsorptive Removal of Specific Organic Pollutants from Water. Bioresour. Technol. 2015, 182, 353–363. DOI: 10.1016/j.biortech.2015.02.003.
  • Debnath, A.; Majumder, M.; Pal, M.; Das, N. S.; Chattopadhyay, K. K.; Saha, B. Enhanced Adsorption of Hexavalent Chromium onto Magnetic Calcium Ferrite Nanoparticles: Kinetic, Isotherm, and Neural Network Modeling. J. Dispersion Sci. Technol. 2016, 37, 1806–1818. DOI: 10.1080/01932691.2016.1141100.
  • Dong, L.; Zhipeng, Z.; Yigang, D. A Simple Method to Prepare Magnetic Modified Corncobs and Its Application for Congo Red Adsorption. J. Dispersion Sci. Technol. 2016, 37, 73–79. DOI: 10.1080/01932691.2015.1027912.
  • Elsalamouny, A. R.; Desouky, O. A.; Mohamed, S. A.; Galhoum, A. A. Evaluation of Adsorption Behavior for U(VI) and Th(IV) Ions onto Solidified Mannich Type Material. J. Dispersion Sci. Technol. 2017, 38, 860–865. DOI: 10.1080/01932691.2016.1207546.
  • Ge, H.; Zou, W. Preparation and Characterization of L-Glutamic Acid-Functionalized Graphene Oxide for Adsorption of Pb(II). J. Dispersion Sci. Technol. 2017, 38, 241–247. DOI: 10.1080/01932691.2016.1160323.
  • Hamdaoui, O. Adsorption of Cu(II) from Aqueous Phase by Cedar Bark. J. Dispersion Sci. Technol. 2017, 38, 1087–1091. DOI: 10.1080/01932691.2016.1225261.
  • Laabd, M.; Atourki, L.; Chafai, H.; Bazzaoui, M.; Elamine, M.; Albourine, A. A Combined Experimental and DFT Investigation of the Adsorption of Humic Acid By-Products on Polypyrrole. J. Dispersion Sci. Technol. 2017, 38, 1227–1233. DOI: 10.1080/01932691.2016.1230722.
  • Nekooghadirli, R.; Taghizadeh, M.; Mahmoudi Alami, F. Adsorption of Pb(II) and Ni(II) from Aqueous Solution by a High-Capacity Industrial Sewage Sludge-Based Adsorbent. J. Dispersion Sci. Technol. 2016, 37, 786–798. DOI: 10.1080/01932691.2015.1062773.
  • Peng, Y.; Wei, W.; Zhou, H.; Ge, S.; Li, S.; Wang, G.; Zhang, Y. Iron Humate as a Novel Adsorbent for p-Arsanilic Acid Removal from Aqueous Solution. J. Dispersion Sci. Technol. 2016, 37, 1590–1598. DOI: 10.1080/01932691.2015.1120219.
  • Sayğılı, G. A.; Güzel, F. Chemical Modification of a Cellulose-Based Material to Improve Its Adsorption Capacity for Anionic Dyes. J. Dispersion Sci. Technol. 2017, 38, 381–392. DOI: 10.1080/01932691.2016.1170608.
  • Suc, N. V.; Kim Chi, D. Removal of Rhodamine B from Aqueous Solution via Adsorption onto Microwave-Activated Rice Husk Ash. J. Dispersion Sci. Technol. 2017, 38, 216–222. DOI: 10.1080/01932691.2016.1155153.
  • Tian, L.; Zhang, J.; Shi, H.; Li, N.; Ping, Q. Adsorption of Malachite Green by Diatomite: Equilibrium Isotherms and Kinetic Studies. J. Dispersion Sci. Technol. 2016, 37, 1059–1066. DOI: 10.1080/01932691.2015.1080610.
  • Wang, G.; Qi, J.; Wang, S.; Wei, Z.; Li, S.; Cui, J.; Wei, W. Surface-Bound Humic Acid Increased Rhodamine B Adsorption on Nanosized Hydroxyapatite. J. Dispersion Sci. Technol. 2017, 38, 632–641. DOI: 10.1080/01932691.2016.1185729.
  • Zhao, X.; An, D.; Ye, Z. Adsorption and Thermodynamic Properties of Dissymmetric Gemini Imidazolium Surfactants with Different Spacer Length. J. Dispersion Sci. Technol. 2017, 38, 296–302. DOI: 10.1080/01932691.2016.1163721.
  • Vakili, M.; Rafatullah, M.; Salamatinia, B.; Abdullah, A. Z.; Ibrahim, M. H.; Tan, K. B.; Gholami, Z.; Amouzgar, P. Application of Chitosan and Its Derivatives as Adsorbents for Dye Removal from Water and Wastewater: A Review. Carbohyd. Polym. 2014, 113, 115–130. DOI: 10.1016/j.carbpol.2014.07.007.
  • Demirbas, A. Agricultural based Activated Carbons for the Removal of Dyes from Aqueous Solutions: A Review. J. Hazard. Mater. 2009, 167, 1–9. DOI: 10.1016/j.jhazmat.2008.12.114.
  • Srinivasan, A.; Viraraghavan, T. Decolorization of Dye Wastewaters by Biosorbents: A Review. J. Environ. Manage. 2010, 91, 1915–1929. DOI: 10.1016/j.jenvman.2010.05.003.
  • Annadurai, G.; Juang, R. S.; Lee, D. J. Use of Cellulose-Based Wastes for Adsorption of Dyes from Aqueous Solutions. J. Hazard. Mater. 2002, 92, 263–274. DOI: 10.1016/s0304-3894(02)00017-1.
  • Anastopoulos, I.; Kyzas, G. Z. Composts as Biosorbents for Decontamination of Various Pollutants: A Review. Water, Air, and Soil Pollution 2015, 226, 61. DOI: 10.1007/s11270-015-2345-2.
  • Anastopoulos, I.; Kyzas, G. Z. Agricultural Peels for Dye Adsorption: A Review of Recent Literature. J. Mol. Liq. 2014, 200, 381–389. DOI: 10.1016/j.molliq.2014.11.006.
  • Anastopoulos, I.; Massas, I.; Ehaliotis, C. Use of Residues and By-Products of the Olive-Oil Production Chain for the Removal of Pollutants from Environmental Media. A Review of Batch Biosorption Approaches. J. Environ. Sci. Health, Part A 2015, 50, 677–718. DOI: 10.1080/10934529.2015.1011964.
  • Amin, M. T.; Alazba, A. A.; Manzoor, U. A Review of Removal of Pollutants from Water/Wastewater using Different Types of Nanomaterials. Adv. Mater. Sci. Eng. 2014, 2014, 1–24. DOI: 10.1155/2014/825910.
  • Qu, X.; Alvarez, P. J. J.; Li, Q. Applications of Nanotechnology in Water and Wastewater Treatment. Water Res. 2013, 47, 3931–3946. DOI: 10.1016/j.watres.2012.09.058.
  • Chaudhry, Q.; Castle, L. Food Applications of Nanotechnologies: An Overview of Opportunities and Challenges for Developing Countries. Trends Food Sci. Technol. 2011, 22, 595–603. DOI: 10.1016/j.tifs.2011.01.001.
  • García, M.; Forbe, T. Gonzalez, E. Potential Applications of Nanotechnology in the Agro-Food Sector. Food Sci. Technol. 2010, 30, 573–581. DOI: 10.1590/s0101-20612010000300002.
  • Martirosyan, A.; Schneider, Y.-J. Engineered Nanomaterials in Food: Implications for Food Safety and Consumer Health. International J. Environ. Res. Public Health 2014, 11, 5720–5750. DOI: 10.3390/ijerph110605720.
  • Blasiak, B.; van Veggel, F. C. J. M.; Tomanek, B. Applications of Nanoparticles for MRI Cancer Diagnosis and Therapy. J. Nanomater. 2013, 2013, 12. DOI: 10.1155/2013/148578.
  • Burgess, R. Medical Applications of Nanoparticles and Nanomaterials. Stud. Health Technol. Inform. 2009, 149, 257–283.
  • Salata, O. V. Applications of Nanoparticles in Biology and Medicine. J. Nanobiotechnol. 2004, 2, 3–3.
  • Chen, H.; Yada, R. Nanotechnologies in Agriculture: New Tools for Sustainable Development. Trends Food Sci. Technol. 2011, 22, 585–594. DOI: 10.1016/j.tifs.2011.09.004.
  • Gogos, A.; Knauer, K.; Bucheli, T. D. Nanomaterials in Plant Protection and Fertilization: Current State, Foreseen Applications, and Research Priorities. J. Agric. Food Chem. 2012, 60, 9781–9792. DOI: 10.1021/jf302154y.
  • Khot, L. R.; Sankaran, S.; Maja, J. M.; Ehsani, R.; Schuster, E. W. Applications of Nanomaterials in Agricultural Production and Crop Protection: A Review. Crop Prot. 2012, 35, 64–70. DOI: 10.1016/j.cropro.2012.01.007.
  • Bhattacharya, S.; Saha, I.; Mukhopadhyay, A.; Chattopadhyay, D.; Ghosh, U. C.; Chatterjee, D. Role of Nanotechnology in Water Treatment and Purification: Potential Applications and Implications. Int. J. Chem. Sci. Technol. 2013, 3, 59–64.
  • Savage, N.; Diallo, M. S. Nanomaterials and Water Purification: Opportunities and Challenges. J. Nanopart. Res. 2005, 7, 331–342. DOI: 10.1007/s11051-005-7523-5.
  • Khajeh, M.; Laurent, S.; Dastafkan, K. Nanoadsorbents: Classification, Preparation, and Applications (with Emphasis on Aqueous Media). Chem. Rev. 2013, 113, 7728–7768. DOI: 10.1021/cr400086v.
  • Prokopov, T. Removal of Copper (ii) from Aqueous Solution by Biosorption onto Powder of Jerusalem Artichoke. Ecol. Eng. Environ. Prot. 2015, 1, 24–32.
  • Gupta, V. K.; Kumar, R.; Nayak, A.; Saleh, T. A.; Barakat, M. A. Adsorptive Removal of Dyes from Aqueous Solution onto Carbon Nanotubes: A Review. Adv. Colloid Interface Sci. 2013, 193–194, 24–34. DOI: 10.1016/j.cis.2013.03.003.
  • Kyzas, G. Z.; Matis, K. A. Nanoadsorbents for Pollutants Removal: A Review. J. Mol. Liq. 2015, 203, 159–168. DOI: 10.1016/j.molliq.2015.01.004.
  • Crini, G.; Badot, P. M. Starch-Based Biosorbents for Dyes in Textile Wastewater Treatment. Int. J. Environ. Technol. Manage. 2010, 12, 129–150. DOI: 10.1504/ijetm.2010.031524.
  • Maurya, N. S.; Mittal, A. K.; Cornel, P. Evaluation of Adsorption Potential of Adsorbents: A Case of Uptake of Cationic Dyes. J. Environ. Biol. 2008, 29, 31–36.
  • Langmuir, I. The Adsorption of Gases on Plane Surface of Glass, Mica and Platinum. J. Am. Chem. Soc. 1916, 40, 1361–1368. DOI: 10.1021/ja02242a004.
  • Freundlich, H. Over the Adsorption in Solution. Z. Phys. Chem. 1906, 57, 385–470.
  • Gerente, C.; Lee, V. K. C.; Le Cloirec, P.; McKay, G. Application of Chitosan for the Removal of Metals from Wastewaters by Adsorption – Mechanisms and Models Review. Crit. Rev. Environ. Sci. Technol. 2007, 37, 41–127. DOI: 10.1080/10643380600729089.
  • Doke, K. M.; Khan, E. M. Adsorption Thermodynamics to Clean Up Wastewater; Critical Review. Rev. Environ. Sci. Biotechnol. 2013, 12, 25–44. DOI: 10.1007/s11157-012-9273-z.
  • Nekouei, F.; Nekouei, S.; Tyagi, I.; Gupta, V. K. Kinetic, Thermodynamic and Isotherm Studies for Acid Blue 129 Removal from Liquids using Copper Oxide Nanoparticle-Modified Activated Carbon as a Novel Adsorbent. J. Mol. Liq. 2015, 201, 124–133. DOI: 10.1016/j.molliq.2014.09.027.
  • Zhang, Y.-R.; Su, P.; Huang, J.; Wang, Q.-R.; Zhao, B.-X. A Magnetic Nanomaterial Modified with Poly-Lysine for Efficient Removal of Anionic Dyes from Water. Chem. Eng. J. 2015, 262, 313–318. DOI: 10.1016/j.cej.2014.09.094.
  • Ali, S. A.; Mohamed, W. S. Kinetic and Equilibrium Studies of Waste Polyethylenedoped Nano-Composite for Dyestuffs Removal. Global J. Pure Appl. Chem. Res. 2015, 3, 1–14.
  • Gholivand, M. B.; Yamini, Y.; Dayeni, M.; Seidi, S.; Tahmasebi, E. Adsorptive Removal of Alizarin Red-S and Alizarin Yellow GG from Aqueous Solutions using Polypyrrole-Coated Magnetic Nanoparticles. J. Environ. Chem. Eng. 2015, 3, 529–540. DOI: 10.1016/j.jece.2015.01.011.
  • Hashemian, S.; Dehghanpor, A.; Moghahed, M. Cu0.5Mn0.5Fe2O4 Nano Spinels as Potential Sorbent for Adsorption of Brilliant Green. J. Ind. Eng. Chem. 2015, 24, 308–314. DOI: 10.1016/j.jiec.2014.10.001.
  • Jin, L.-N.; Qian, X.-Y.; Wang, J.-G.; Aslan, H.; Dong, M. MIL-68 (In) Nano-Rods for the Removal of Congo Red Dye from Aqueous Solution. J. Colloid Interface Sci. 2015, 453, 270–275. DOI: 10.1016/j.jcis.2015.05.005.
  • An, S.; Liu, X.; Yang, L.; Zhang, L. Enhancement Removal of Crystal Violet Dye using Magnetic Calcium Ferrite Nanoparticle: Study in Single- and Binary-Solute Systems. Chem. Eng. Res. Des. 2015, 94, 726–735. DOI: 10.1016/j.cherd.2014.10.013.
  • Shu, J.; Wang, Z.; Huang, Y.; Huang, N.; Ren, C.; Zhang, W. Adsorption Removal of Congo Red from Aqueous Solution by Polyhedral Cu2O Nanoparticles: Kinetics, Isotherms, Thermodynamics and Mechanism Analysis. J. Alloys Compd. 2015, 633, 338–346. DOI: 10.1016/j.jallcom.2015.02.048.
  • Daniel, S.; Syed, P. S. Sequestration of Carcinogenic Dye in Waste Water by Utilizing an Encapsulated Activated Carbon with Nano MgO. Int. J. ChemTech. Res. 2015, 7, 2235–2243.
  • Hashemian, S.; Hidarian, M. Synthesize and Characterization of Sawdust/MnFe2O4 Nano Composite for Removal of Indigo Carmine from Aqueous Solutions. Orient. J. Chem. 2014, 30, 1753–1762. DOI: 10.13005/ojc/300434.
  • Wang, D.; Liu, L.; Jiang, X.; Yu, J.; Chen, X. Adsorption and Removal of Malachite Green from Aqueous Solution using Magnetic β-Cyclodextrin-Graphene Oxide Nanocomposites as Adsorbents. Colloid Surf. A 2015, 466, 166–173. DOI: 10.1016/j.colsurfa.2014.11.021.
  • Li, L. H.; Xiao, J.; Liu, P.; Yang, G. W. Super Adsorption Capability from Amorphousization of Metal Oxide Nanoparticles for Dye Removal. Sci. Rep. 2015, 5, 9028. DOI: 10.1038/srep09028.
  • Liu, Y.; Zeng, G.; Tang, L.; Cai, Y.; Pang, Y.; Zhang, Y.; Yang, G.; Zhou, Y.; He, X.; He, Y. Highly Effective Adsorption of Cationic and Anionic Dyes on Magnetic Fe/Ni Nanoparticles Doped Bimodal Mesoporous Carbon. J. Colloid Interface Sci. 2015, 448, 451–459. DOI: 10.1016/j.jcis.2015.02.037.
  • Arshadi, M.; Faraji, A. R.; Mehravar, M. Dye Removal from Aqueous Solution by Cobalt-Nano Particles Decorated Aluminum Silicate: Kinetic, Thermodynamic and Mechanism Studies. J. Colloid Interface Sci. 2015, 440, 91–101. DOI: 10.1016/j.jcis.2014.10.040.
  • Dadfarnia, S.; Haji Shabani, A. M.; Moradi, S. E.; Emami, S. Methyl Red Removal from Water by Iron Based Metal-Organic Frameworks Loaded onto Iron Oxide Nanoparticle Adsorbent. Appl. Surf. Sci. 2015, 330, 85–93. DOI: 10.1016/j.apsusc.2014.12.196.
  • Tanhaei, B.; Ayati, A.; Lahtinen, M.; Sillanpää, M. Preparation and Characterization of a Novel Chitosan/Al2O3/Magnetite Nanoparticles Composite Adsorbent for Kinetic, Thermodynamic and Isotherm Studies of Methyl Orange Adsorption. Chem. Eng. J. 2015, 259, 1–10. DOI: 10.1016/j.cej.2014.07.109.
  • Song, Y.-B.; Lv, S.-N.; Cheng, C.-J.; Ni, G.-L.; Xie, X.-W.; Huang, W.; Zhao, Z.-G. Fast and Highly-Efficient Removal of Methylene Blue from Aqueous Solution by Poly(Styrenesulfonic Acid-Co-Maleic Acid)-Sodium-Modified Magnetic Colloidal Nanocrystal Clusters. Appl. Surf. Sci. 2015, 324, 854–863. DOI: 10.1016/j.apsusc.2014.11.060.
  • Zhou, Q.; Gao, Q.; Luo, W.; Yan, C.; Ji, Z.; Duan, P. One-Step Synthesis of Amino-Functionalized Attapulgite Clay Nanoparticles Adsorbent by Hydrothermal Carbonization of Chitosan for Removal of Methylene Blue from Wastewater. Colloid Surf. A 2015, 470, 248–257. DOI: 10.1016/j.colsurfa.2015.01.092.
  • Abdel Salam, M. Synthesis and Characterization of Novel Manganese Oxide Nanocorals and their Application for the Removal of Methylene Blue from Aqueous Solution. Chem. Eng. J. 2015, 270, 50–57. DOI: 10.1016/j.cej.2015.02.022.
  • Vanaamudan, A.; Sudhakar, P. P. Equilibrium, Kinetics and Thermodynamic Study on Adsorption of Reactive Blue-21 and Reactive Red-141 by Chitosan-Organically Modified Nanoclay (Cloisite 30B) Nano-Bio Composite. J. Taiwan Inst. Chem. Eng. 2015, 55, 145–151. DOI: 10.1016/j.jtice.2015.03.025.
  • Shanehsaz, M.; Seidi, S.; Ghorbani, Y.; Shoja, S. M. R.; Rouhani, S. Polypyrrole-Coated Magnetic Nanoparticles as an Efficient Adsorbent for RB19 Synthetic Textile Dye: Removal and Kinetic Study. Spectrochim. Acta, Part A 2015, 149, 481–486. DOI: 10.1016/j.saa.2015.04.114.
  • Jiang, G.; Chang, Q.; Yang, F.; Hu, X.; Tang, H. Sono-Assisted Preparation of Magnetic Ferroferric Oxide/Graphene Oxide Nanoparticles and Application on Dye Removal. Chin. J. Chem. Eng. 2015, 23, 510–515. DOI: 10.1016/j.cjche.2014.06.037.
  • Motahari, F.; Mozdianfard, M. R.; Salavati-Niasari, M. Synthesis and Adsorption Studies of NiO Nanoparticles in the Presence of H2acacen Ligand, for Removing Rhodamine B in Wastewater Treatment. Process Saf. Environ. Prot. 2015, 93, 282–292. DOI: 10.1016/j.psep.2014.06.006.
  • Patil, M. R.; Shrivastava, V. S. Adsorption Removal of Carcinogenic Acid violet19 Dye from Aqueous Solution by Polyaniline-Fe2O3 Magnetic Nano-Composite. J. Mater. Environ. Sci. 2015, 6, 11–21.
  • Anastopoulos, I.; Kyzas, G. Z. Are the Thermodynamic Parameters Correctly Estimated in Liquid-Phase Adsorption Phenomena? J. Mol. Liq. 2016, 218, 174–185. DOI: 10.1016/j.molliq.2016.02.059.
  • Ramesh, A.; Lee, D. J.; Wong, J. W. C. Thermodynamic Parameters for Adsorption Equilibrium of Heavy Metals and Dyes from Wastewater with Low-Cost Adsorbents. J. Colloid Interface Sci. 2005, 291, 588–592. DOI: 10.1016/j.jcis.2005.04.084.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.