186
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Methane hydrate: Modeling and assessing the experimental data of incipient stability conditions

, ORCID Icon &
Pages 848-861 | Received 25 Sep 2017, Accepted 26 Oct 2017, Published online: 15 Jan 2018

References

  • Makogon, Y. F. Hydrates of Natural gas; Penn Well Publishing: Texas A&M University, College Station, Texas, USA, 1981.
  • Sloan, E. D. Clathrate Hydrates of Natural Gases, 2nd ed.; Marcel Dekker, Inc.: New York, USA, 1998.
  • Caroll, J. Natural Gas Hydrate, A Guide for Engineers, 2nd ed.; Gulf Professional Publishing: New York, USA, 2009.
  • Campbell, J. M. Gas Conditioning and Processing, 7th ed.; Campbell Petroleum Series: Oklahoma, USA, 1992.
  • Hammerschmidt, E. G. Formation of Gas Hydrates in Natural Gas Transmission Lines. Ind. Eng. Chem. 1934, 26, 851–855. DOI: 10.1021/ie50296a010.
  • Barker, J. W.; Gomez, R. K. Formation of Hydrates During Deepwater Drilling Operations. J. Pet. Technol. 1989, 41, 297–301. DOI: 10.2118/16130-pa.
  • Makogon, Y. F. Formation of Hydrates in Shut-down Pipelines in Offshore Conditions. in, 1996.
  • GPSA. Gas Processors Suppliers Association, 12th ed.: Tulsa, Oklahoma, USA, 2004.
  • Ghiasi, M. M.; Mohammadi, A. H. Determination of Methane‐Hydrate Phase Equilibrium in the Presence of Electrolytes or Organic Inhibitors by using a Semi‐Theoretical Framework. Energy Technol. 2013, 1, 519–529. DOI: 10.1002/ente.201300063.
  • Najibi, H.; Chapoy, A.; Haghighi, H.; Tohidi, B. Experimental Determination and Pre diction of Methane Hydrate Stability in Alcohols and Electrolyte Solutions. Fluid Phase Equilib. 2009, 275, 127–131. DOI: 10.1016/j.fluid.2008.09.020.
  • Bruinsma, D.F. M.; Desens, J. T.; Notz, P. K.; Sloan, E. D. A Novel Experimental Technique for Measuring Methanol Partitioning Between Aqueous and Hydrocarbon Phases at Pressures up to 69 MPa. Fluid Phase Equilib. 2004, 222–223, 311–315. DOI: 10.1016/j.fluid.2004.06.025.
  • ØStergaard, K. K.; Tohidi, B.; Danesh, A.; Todd, A. C. Gas Hydrates and Offshore Drilling: Predicting the Hydrate Free Zone. Ann. N. Y. Acad. Sci. 2000, 912, 411–419. DOI: 10.1111/j.1749-6632.2000.tb06795.x.
  • Chapoy, A.; Tohidi, B. Hydrates in High MEG Concentration Systems. in, 2011.
  • Ghiasi, M. M.; Bahadori, A.; Zendehboudi, S.; Jamili, A.; Rezaei-Gomari, S. Novel Methods Predict Equilibrium Vapor Methanol Content During Gas Hydrate Inhibition. J. Nat. Gas Sci. Eng. 2013, 15, 69–75. DOI: 10.1016/j.jngse.2013.09.006.
  • Mady, M. F.; J. Min Bak, Lee, H.-I.; Kelland, M. A. The First Kinetic Hydrate Inhibition Investigation on Fluorinated Polymers: Poly(fluoroalkylacrylamide)s. Chem. Eng. Sci. 2014, 119, 230–235. DOI: 10.1016/j.ces.2014.08.034.
  • Arjmandi, M.; Tohidi, B.; Danesh, A.; Todd, A. C. Is Subcooling the Right Driving Force for Testing Low-Dosage Hydrate Inhibitors? Chem. Eng. Sci. 2005, 60, 1313–1321. DOI: 10.1016/j.ces.2004.10.005.
  • Jensen, L.; Ramløv, H.; Thomsen, K.; von Solms, N. Inhibition of Gas Hydrate Formation by Low-dosage, Environmentally Benign Inhibitors. in, 2010, pp. 445–453.
  • Strobel, T. A.; Hester, K. C.; Koh, C. A.; Sum, A. K.; Sloan Jr. E. D. Properties of the clathrates of hydrogen and developments in their applicability for hydrogen storage. Chem. Phys. Lett. 2009, 478, 97–109. DOI: 10.1016/j.cplett.2009.07.030.
  • Chatti, I.; Delahaye, A.; Fournaison, L.; Petitet, J. P. Benefits and Drawbacks of Clathrate Hydrates: A Review of Their Areas of Interest. Energy Convers. Manage. 2005, 46, 1333–1343. DOI: 10.1016/j.enconman.2004.06.032.
  • Xie, Y.; Li, G.; Liu, D.; Liu, N.; Qi, Y.; Liang, D.; Guo, K.; Fan, S. Experimental Study on a Small Scale of Gas Hydrate Cold Storage Apparatus. Appl. Energy. 2010, 87, 3340–3346. DOI: 10.1016/j.apenergy.2010.05.028.
  • Bi, Y.; Guo, T.; Zhang, L.; Chen, L.; Sun, F. Entropy Generation Minimization for Charging and Discharging Processes in a Gas-Hydrate Cool Storage System. Appl. Energy. 2010, 87, 1149–1157. DOI: 10.1016/j.apenergy.2009.07.020.
  • Javanmardi, J.; Nasrifar, K.; Najibi, S. H.; Moshfeghian, M. Economic Evaluation of Natural Gas Hydrate as an Alternative for Natural Gas Transportation. Appl. Therm. Eng. 2005, 25, 1708–1723. DOI: 10.1016/j.applthermaleng.2004.10.009.
  • Ogawa, H.; Imura, N.; Miyoshi, T.; Ohmura, R.; Mori, Y. H. Thermodynamic Simulations of Isobaric Hydrate-Forming Operations for Natural Gas Storage. Energy Fuels. 2009, 23, 849–856. DOI: 10.1021/ef200225w.
  • Duc, N. H.; Chauvy, F.; Herri, J.-M. CO2 Capture by Hydrate Crystallization – A Potential Solution for Gas Emission of Steelmaking Industry. Energy Convers. Manage. 2007, 48, 1313–1322. DOI: 10.1016/j.enconman.2006.09.024.
  • Vorotyntsev, V. M.; Malyshev, V. M.; Taraburov, P. G.; Mochalov, G. M. Separation of Gas Mixtures by Continuous Gas Hydrate Crystallization. Theor. Found. Chem. Eng. 2001, 35, 513–515.
  • Sugahara, T.; Murayama, S.; Hashimoto, S.; Ohgaki, K. Phase Equilibria for H2 + CO2 + H2O System Containing Gas Hydrates. Fluid Phase Equilib. 2005, 233, 190–193. DOI: 10.1016/j.fluid.2005.05.006.
  • Kang, S. P.; Lee, H.; Lee, C. S.; Sung, W. M. Hydrate Phase Equilibria of the Guest Mixtures Containing CO2, N2 and Tetrahydrofuran. Fluid Phase Equilib. 2001, 185, 101–109. DOI: 10.1016/s0378-3812(01)00460-5.
  • Zhang, B.; Wu, Q. Thermodynamic Promotion of Tetrahydrofuran on Methane Separation from Low-Concentration Coal Mine Methane Based on Hydrate. Energy Fuels. 2010, 24, 2530–2535. DOI: 10.1021/ef901446n.
  • Sun, C.-Y.; Chen, G.-J.; Zhang, L.-W. Hydrate Phase Equilibrium and Structure for (Methane + Ethane + Tetrahydrofuran + Water) System. J. Chem. Thermodyn. 2010, 42, 1173–1179.
  • Barduhn, A. J. The State of the Crystallization Processes for Desalting Saline Waters. Desalination. 1968, 5, 173–184. DOI: 10.1016/s0011-9164(00)80212-x.
  • Sugi, J.; Saito, S. Concentration and Demineralization of Sea Water by the Hydrate Process. Desalination, 1967, 3, 27–31. DOI: 10.1016/s0011-9164(00)84021-7.
  • Han, S.; Rhee, Y.-W.; Kang, S.-P. Investigation of Salt Removal using Cyclopentane Hydrate Formation and Washing Treatment for Seawater Desalination. Desalination. 2017, 404, 132–137. DOI: 10.1016/j.desal.2016.11.016.
  • Han, S.-W, Kim, W.; Lee, Y.; Jun, B.-M.; Kwon, Y.-N. Investigation of Hydrate-Induced Ice Desalination (HIID) and Its Application to a Pretreatment of Reverse Osmosis (RO) Process. Desalination. 2016, 395, 8–16. DOI: 10.1016/j.desal.2016.05.023.
  • Kang, K. C.; Linga, P.; Park, K.-N.; Choi, S.-J.; Lee, J. D. Seawater Desalination by Gas Hydrate Process and Removal Characteristics of Dissolved Ions (Na+ , K+ , Mg2+ , Ca2+ , B3+ , Cl−, SO42−). Desalination 2014, 353, 84–90. DOI: 10.1016/j.desal.2014.09.007.
  • Lund, D. B.; Fennema, O.; Powrie, W. D. Effect of Gas Hydrates and Hydrate Formers on Invertase Activity. Arch. Biochem. Biophys. 1969, 129, 181–188. DOI: 10.1016/0003-9861(69)90164-7.
  • Berberich, J. A.; Kaar, J. L.; Russell, A. J. Use of Salt Hydrate Pairs to Control Water Activity for Enzyme Catalysis in Ionic Liquids. Biotechnol. Progress. 2003, 19, 1029–1032. DOI: 10.1021/bp034001h.
  • Funabiki, K.; Matsunaga, K.; Nojiri, M.; Hashimoto, W.; Yamamoto, H.; Shibata, K.; Matsui, M. The Use of Trifluoroacetaldehyde Ethyl Hemiacetal or Hydrate in a Simple and Practical Regioselective Synthesis of β-Hydroxy-β-trifluoromethyl Ketones from Enamines and Imines. J. Org. Chem. 2003, 68, 2853–2860. DOI: 10.1002/chin.200332062.
  • Peng, X.; Hu, Y.; Liu, Y.; Jin, C.; Lin, H. Separation of Ionic Liquids from Dilute Aqueous Solutions Using the Method Based on CO2 Hydrates. J. Nat. Gas Chem. 2010, 19, 81–85. DOI: 10.1016/s1003-9953(09)60027-x.
  • Speight, J. G. Natural Gas: A Basic Handbook; Gulf Publishing Company: Houston, USA, 2007.
  • Xiao, Y.; Low, B. T.; Hosseini, S. S.; Chung, T. S.; Paul, D. R. The Strategies of Molecular Architecture and Modification of Polyimide-Based Membranes for CO2 Removal from Natural Gas—A Review. Progress Polym. Sci. 2009, 34, 561–580. DOI: 10.1016/j.progpolymsci.2008.12.004.
  • Schoots, K.; Rivera-Tinoco, R.; Verbong, G.; van der Zwaan, B. Historical Variation in the Capital Costs of Natural Gas, Carbon Dioxide and Hydrogen Pipelines and Implications for Future Infrastructure. Int. J. Greenhouse Gas Control. 2011, 5, 1614–1623. DOI: 10.1016/j.ijggc.2011.09.008.
  • Armaroli, N.; Balzani, V. Energy for a Sustainable World From the Oil Age to a Sun-Powered Future; WILEY-VCH Verlag GmbH & Co., KGaA: Weinheim, 2011.
  • Ghiasi, M. M.; Arabloo, M.; Mohammadi, A. H.; Barghi, T. Application of ANFIS Soft Computing Technique in Modeling the CO2 Capture with MEA, DEA, and TEA Aqueous Solutions. Int. J. Greenhouse Gas Control 2016, 49, 47–54. DOI: 10.1016/j.ijggc.2016.02.015.
  • Holditch, S. A. Tight Gas Sands.
  • Chong, Z. R.; Yang, S.H. B.;Babu, P.; Linga, P.; Li, X.-S. Review of Natural Gas Hydrates as an Energy Resource: Prospects and Challenges. Appl. Energy. 2016, 162, 1633–1652. DOI: 10.1016/j.apenergy.2014.12.061.
  • Boswell, R.; Collett, T. S. Current Perspectives on Gas Hydrate Resources. Energy Environ. Sci. 2011, 4, 1206–1215. DOI: 10.1039/c0ee00203h.
  • Milkov, A. V. Global Estimates of Hydrate-Bound Gas in Marine Sediments: How Much is Really Out There? Earth-Sci. Rev. 2004, 66, 183–197. DOI: 10.1016/j.earscirev.2003.11.002.
  • Kvenvolden, K. A. Origins of Methane in the Earth Methane hydrate — A Major Reservoir of Carbon in the Shallow Geosphere? Chem. Geol. 1988, 71, 41–51.
  • MacDonald, G. J. The Future of Methane as an Energy Resource. Ann. Rev. Energy 1990, 15, 53–83. DOI: 10.1146/annurev.energy.15.1.53.
  • Archer, D.; Buffett, B.; Brovkin, V. Ocean Methane Hydrates as a Slow Tipping Point in the Global Carbon Cycle. Proc. Nat. Acad. Sci. 2009, 106, 20596–20601. DOI: 10.1073/pnas.0800885105.
  • Tang, L. G.; Xiao, R.; Huang, C.; Feng, Z. P.; Fan, S. S. Experimental Investigation of Production Behavior of Gas Hydrate under Thermal Stimulation in Unconsolidated Sediment. Energy Fuels 2005, 19, 2402–2407. DOI: 10.1021/ef050223g.
  • Pang, W. X.; Xu, W. Y.; Sun, C. Y.; Zhang, C. L.; Chen, G. J. Methane Hydrate Dissociation Experiment in a Middle-Sized Quiescent Reactor Using Thermal Method. Fuel 2009, 88, 497–503. DOI: 10.1016/j.fuel.2008.11.002.
  • Linga, P.; Haligva, C.; Nam, S. C.; Ripmeester, J. A.; Englezos, P. Recovery of Methane from Hydrate Formed in a Variable Volume Bed of Silica Sand Particles. Energy Fuels. 2009, 23, 5508–5516. DOI: 10.1021/ef900543v.
  • Kim, H. C.; Bishnoi, P. R.; Heidemann, R. A.; Rizvi, S. S. H. Kinetics of Methane Hydrate Decomposition. Chem. Eng. Sci. 1987, 42, 1645–1653. DOI: 10.1016/0009-2509(87)80169-0.
  • Liu, Y.; Strumendo, M.; Arastoopour, H. Simulation of Methane Production from Hydrates by Depressurization and Thermal Stimulation. Ind. Eng. Chem. Res. 2009, 48, 2451–2464. DOI: 10.1021/ie8005275.
  • Konno, Y.; Masuda, Y.; Hariguchi, Y.; Kurihara, M.; Ouchi, H. Key Factors for Depressurization-Induced Gas Production from Oceanic Methane Hydrates. Energy Fuels. 2010, 24, 1736–1744. DOI: 10.1021/ef901115h.
  • Yuan, Q.; Sun, C.-Y.; Yang, X.; Ma, P.-C.; Ma, Z.-W.; Li, Q.-P.; Chen, G.-J. Gas Production from Methane-Hydrate-Bearing Sands by Ethylene Glycol Injection Using a Three-Dimensional Reactor. Energy Fuels. 2011, 25, 3108–3115. DOI: 10.1021/ef200510e.
  • Li, G.; Li, X.-S.; Li, B.; Wang, Y. Methane Hydrate Dissociation Using Inverted Five-Spot Water Flooding Method in Cubic Hydrate Simulator. Energy. 2014, 64, 298–306. DOI: 10.1016/j.energy.2013.10.015.
  • Li, G.; Li, X.-S.; Yang, B.; Duan, L.-P.; Huang, N.-S.; Zhang, Y.; Tang, L.-G. The Use of Dual Horizontal Wells in Gas Production from Hydrate Accumulations. Appl. Energy. 2013, 112, 1303–1310. DOI: 10.1016/j.apenergy.2013.03.057.
  • Li, X.-S.; Yang, B.; Duan, L.-P.; Li, G.; Huang, N.-S.; Zhang, Y. Experimental Study on Gas Production From Methane Hydrate in Porous Media by SAGD Method. Appl. Energy 2013, 112, 1233–1240. DOI: 10.1016/j.apenergy.2013.02.007.
  • Goel, N. In Situ Methane Hydrate Dissociation with Carbon Dioxide Sequestration: Current Knowledge and Issues. J. Pet. Sci. Eng. 2006, 51, 169–184. DOI: 10.1016/j.petrol.2006.01.005.
  • Ohgaki, K.; Inoue, Y. Proposal for Gas Storage on the Bottom of the Ocean, Using Gas Hydrates. Int. Chem. Eng. 1994, 34, 417–419. DOI: 10.1252/kakoronbunshu.17.1053.
  • Chapoy, A.; Haghighi, H.; Burgass, R.; Tohidi, B. On the Phase Behaviour of the (Carbon Dioxide + Water) Systems at Low Temperatures: Experimental and Modelling. J. Chem. Thermodyn. 2012, 47, 6–12.
  • Østergaard, K. K.; Masoudi, R.; Tohidi, B.; Danesh, A.; Todd, A. C. A General Correlation for Predicting the Suppression of Hydrate Dissociation Temperature in the Presence of Thermodynamic Inhibitors. J. Pet. Sci. Eng. 2005, 48, 70–80. DOI: 10.1016/j.petrol.2005.04.002.
  • Englezos, P.; Bishnoi, P. R. Prediction of Gas Hydrate Formation Conditions in Aqueous Electrolyte Solutions. AIChE J. 1988, 34, 1718–1721. DOI: 10.1002/aic.690341017.
  • Davies, S.; Boxall, J.; Dieker, L.; Sum, A.; Koh, C.; Sloan, E. D.; Creek, J. L.; Xu, Z.-G. Improved Predictions of Hydrate Plug Formation in Oil-Dominated Flowlines. in Offshore Technology Conference, Houston, Texas, 2009.
  • Böttger, A.; Pérez-Salado Kamps, Á.; Maurer, G. An Experimental Investigation of the Phase Equilibrium of the Binary System (Methane + Water) at Low Temperatures: Solubility of Methane in Water and Three-Phase (Vapour + Liquid + Hydrate) Equilibrium. Fluid Phase Equilib. 2016, 407, 209–216. DOI: 10.1016/j.fluid.2015.03.041.
  • Nagashima, H. D.; Ohmura, R. Phase Equilibrium Condition Measurements in Methane Clathrate Hydrate Forming System From 197.3 K to 238.7 K. J. Chem. Thermodyn. 2016, 102, 252–256. DOI: 10.1016/j.jct.2016.07.018.
  • Wu, W.-Z.; Guan, J.-A.; Shen, X.-D.; Shi, L.-L.; Long, Z.; Zhou, X.-B.; Liang, D.-Q. Phase Equilibrium Data of Methane Hydrate in the Aqueous Solutions of Additive Mixtures (THF + TBAC). J. Chem. Eng. Data 2016, 61, 3498–3503. DOI: 10.1021/acs.jced.6b00405.
  • Long, Z.; Zhou, X.; Liang, D.; Li, D. Experimental Study of Methane Hydrate Equilibria in [EMIM]-NO3 Aqueous Solutions. J. Chem. Eng. Data 2015, 60, 2728–2732. DOI: 10.1021/acs.jced.5b00435.
  • Windmeier, C.; Oellrich, L. R. Experimental Methane Hydrate Dissociation Conditions in Aqueous Solutions of Lithium Salts. J. Chem. Eng. Data. 2014, 59, 516–518. DOI: 10.1021/je4010036.
  • Sangwai, J. S.; Oellrich, L. Phase Equilibrium of Semiclathrate Hydrates of Methane in Aqueous Solutions of Tetra-n-Butyl Ammonium Bromide (TBAB) and TBAB–NaCl. Fluid Phase Equilib. 2014, 367, 95–102. DOI: 10.1016/j.fluid.2014.01.036.
  • Saw, V. K.; Das, B. B.; Ahmad, I.; Mandal, A.; Laik, S. Influence of Electrolytes on Methane Hydrate Formation and Dissociation, Energy Sources, Part A: Recovery, Util. Environ. Effects. 2014, 36, 1659–1669. DOI: 10.1080/15567036.2011.557695.
  • Ghavipour, M.; Ghavipour, M.; Chitsazan, M.; Najibi, S. H.; Ghidary, S. S. Experimental Study of Natural Gas Hydrates and A Novel Use of Neural Network to Predict Hydrate Formation Conditions. Chem. Eng. Res. Des. 2013, 91, 264–273. DOI: 10.1016/j.cherd.2012.08.010.
  • Zare, M.; Haghtalab, A.; Ahmadi, A. N.; Nazari, K. Experiment and Thermodynamic Modeling of Methane Hydrate Equilibria in the Presence of Aqueous Imidazolium-Based Ionic Liquid Solutions Using Electrolyte Cubic Square Well Equation of State. Fluid Phase Equilib. 2013, 341, 61–69. DOI: 10.1016/j.fluid.2012.12.024.
  • Keshavarz, L.; Javanmardi, J.; Eslamimanesh, A.; Mohammadi, A. H. Experimental Measurement and Thermodynamic Modeling of Methane Hydrate Dissociation Conditions in the Presence of Aqueous Solution of Ionic Liquid. Fluid Phase Equilib. 2013, 354, 312–318. DOI: 10.1016/j.fluid.2013.05.007.
  • Sami, N. A.; Das, K.; Sangwai, J. S.; Balasubramanian, N. Phase Equilibria of Methane and Carbon Dioxide Clathrate Hydrates in the Presence of (Methanol + MgCl2) and (Ethylene Glycol + MgCl2) Aqueous Solutions. J. Chem. Thermodyn. 2013, 65, 198–203. DOI: 10.1016/j.jct.2013.05.050.
  • Cheng, C.-T.; Chen, L.-J.; Lin, S.-T.; Tang, M.; Chen, P.-C.; Chen, Y.-P. Measurements for the Dissociation Conditions of Methane Hydrate in the Presence of 2,5-Dihydrofuran and 3,4-Dihydro-2H-Pyran. Fluid Phase Equilib. 2013, 338, 114–118. DOI: 10.1016/j.fluid.2012.10.023.
  • Lafond, P. G.; Olcott, K. A.; E. Dendy Sloan, Koh, C. A.; Sum, A. K. Measurements of Methane Hydrate Equilibrium in Systems Inhibited with NaCl and Methanol. J. Chem. Thermodyn. 2012, 48, 1–6. DOI: 10.1016/j.jct.2011.12.023.
  • Partoon, B.; Wong, N.M. S.; Sabil, K. M.; Nasrifar, K.; Ahmad, M. R. A Study on Thermodynamics Effect of [EMIM]-Cl and [OH-C2MIM]-Cl on Methane Hydrate Equilibrium Line. Fluid Phase Equilib. 2013, 337, 26–31. DOI: 10.1016/j.fluid.2012.09.025.
  • Li, X.-S.; Liu, Y.-J.; Zeng, Z.-Y.; Chen, Z.-Y.; Li, G.; Wu, H.-J. Equilibrium Hydrate Formation Conditions for the Mixtures of Methane + Ionic Liquids + Water. J. Chem. Eng. Data. 2011, 56, 119–123. DOI: 10.1021/je100987q.
  • Ko, W.-Y.; Chen, L.-J.; Lin, S.-T.; Chen, Y.-P. Measurements for the Dissociation Conditions of Methane Hydrate in the Presence of 1,3,5-Trioxane and Oxolan-2-ylmethanol. J. Chem. Eng. Data. 2011, 56, 3406–3410. DOI: 10.1021/je200396x.
  • Belandria, V.; Mohammadi, A. H.; Richon, D. Phase Equilibria of Clathrate Hydrates of Methane + Carbon Dioxide: New Experimental Data and Predictions. Fluid Phase Equilib. 2010, 296, 60–65. DOI: 10.1016/j.fluid.2010.03.038.
  • Kuo, P.-C.; Chen, L.-J.; Lin, S.-T.; Chen, Y.-P. Measurements for the Dissociation Conditions of Methane Hydrate in the Presence of 2-Methyl-2-Propanol. J. Chem. Eng. Data. 2010, 55, 5036–5039. DOI: 10.1021/je100620j.
  • Porz, L. O.; Clarke, M. A.; Oellrich, L. R. Experimental Investigation of Methane Hydrates Equilibrium Condition in the Presence of KNO3, MgSO4, and CuSO4. J. Chem. Eng. Data 2010, 55, 262–266. DOI: 10.1021/je9003228.
  • Maekawa, T. Equilibrium Conditions for Clathrate Hydrates Formed from Methane and Aqueous Propanol Solutions. Fluid Phase Equilib. 2008, 267, 1–5. DOI: 10.1016/j.fluid.2008.02.006.
  • Li, D.-L.; Du, J.-W.; Fan, S.-S.; Liang, D.-Q.; Li, X.-S.; Huang, N.-S. Clathrate Dissociation Conditions for Methane + Tetra-n-butyl Ammonium Bromide (TBAB) + Water. J. Chem. Eng. Data. 2007, 52, 1916–1918. DOI: 10.1021/je700229e.
  • Gayet, P.; Dicharry, C.; Marion, G.; Graciaa, A.; Lachaise, J.; Nesterov, A. Experimental Determination of Methane Hydrate Dissociation Curve up to 55 MPa by Using a Small Amount of Surfactant as Hydrate Promoter. Chem. Eng. Sci. 2005, 60, 5751–5758. DOI: 10.1016/j.ces.2005.04.069.
  • Mohammadi, A. H.; Anderson, R.; Tohidi, B. Carbon Monoxide Clathrate Hydrates: Equilibrium Data and Thermodynamic Modeling. AIChE J. 2005, 51, 2825–2833. DOI: 10.1002/aic.10526.
  • Mohammadi, A. H.; Tohidi, B.; Burgass, R. W. Equilibrium Data and Thermodynamic Modeling of Nitrogen, Oxygen, and Air Clathrate Hydrates. J. Chem. Eng. Data. 2003, 48, 612–616. DOI: 10.1021/je025608x.
  • Lei, H.; Zheng, Y.; Wu, B. Equilibrium PT Curve of Methane Hydrates in the Presence of AlCl3. Chin. Sci. Bull. 2003, 48, 53–56. DOI: 10.1007/bf03183334.
  • Nakamura, T.; Makino, T.; Sugahara, T.; Ohgaki, K. Stability Boundaries of Gas Hydrates Helped by Methane—Structure-H Hydrates of Methylcyclohexane and cis-1,2-Dimethylcyclohexane. Chem. Eng. Sci. 2003, 58, 269–273. DOI: 10.1016/s0009-2509(02)00518-3.
  • Martynets, V. G.; Afanas’ev, I. S.; Bezverkhii, P. P.; Kuskova, N. V.; Matizen, E. V. Equilibrium and Kinetic Properties of Methane Hydrate. Theor. Found. Chem. Eng. 2002, 36, 495–499.
  • Hachikubo, A.; Miyamoto, A.; Hyakutake, K.; Abe, K.; Shoji, H. Phase Equilibrium Studies on Gas Hydrates Formed from Various Guest Molecules and Powder Ice. in, 2002, pp. 357–360.
  • Jager, M. D.; Sloan, E. D. The Effect of Pressure on Methane Hydration in Pure Water and Sodium Chloride Solutions. Fluid Phase Equilib. 2001, 185, 89–99. DOI: 10.1016/s0378-3812(01)00459-9.
  • Yang, S. O.; Cho, S. H.; Lee, H.; Lee, C. S. Measurement and Prediction of Phase Equilibria for Water + Methane in Hydrate Forming Conditions. Fluid Phase Equilib. 2001, 185, 53–63. DOI: 10.1016/s0378-3812(01)00456-3.
  • Seo, Y.-T.; Lee, H. Multiple-Phase Hydrate Equilibria of the Ternary Carbon Dioxide, Methane, and Water Mixtures. J. Phys. Chem. B. 2001, 105, 10084–10090. DOI: 10.1021/jp011095+.
  • Seo, Y.-T.; Lee, H.; Yoon, J.-H. Hydrate Phase Equilibria of the Carbon Dioxide, Methane, and Water System, J. Chem. Eng. Data. 2001, 46, 381–384. DOI: 10.1021/je000237a.
  • Sung, W.-M.; Lee, H.-S.; Kwon, O.-K.; Huh, D.-G. Experimental and Numerical Studies for the Analysis of Equilibrium Conditions of Gas Hydrate. Geosys. Eng. 1998, 1, 67–73. DOI: 10.1080/12269328.1998.10541127.
  • Nixdorf, J.; Oellrich, L. R. Experimental Determination of Hydrate Equilibrium Conditions for Pure Gases, Binary and Ternary Mixtures and Natural Gases. Fluid Phase Equilib. 1997, 139, 325–333. DOI: 10.1016/s0378-3812(97)00141-6.
  • Makogon, T.; Sloan, J. E. Phase Equilibrium for Methane Hydrate from 190 to 262 K. J. Chem. Eng. Data 1995, 40, 344–344. DOI: 10.1021/je00017a901.
  • Makogon, T. Y.; Sloan, E. D. Jr., Phase Equilibrium for Methane Hydrate from 190 to 262 K. J. Chem. Eng. Data. 1994, 39, 351–353. DOI: 10.1021/je00017a901.
  • Adisasmito, S.; Frank, R. J.; Sloan, E. D. Hydrates of Carbon Dioxide and Methane Mixtures. J. Chem. Eng. Data. 1991, 36, 68–71. DOI: 10.1021/je00001a020.
  • Thakore, J. L.; Holder, G. D. Solid Vapor Azeotropes in Hydrate-Forming Systems. Ind. Eng. Chem. Res. 1987, 26, 462–469. DOI: 10.1021/ie00063a011.
  • De Roo, J. L.; Peters, C. J.; Lichtenthaler, R. N.; Diepen, G. A. M. Occurrence of Methane Hydrate in Saturated and Unsaturated Solutions of Sodium Chloride and Water in Dependence of Temperature and Pressure. AIChE J. 1983, 29, 651–657. DOI: 10.1002/aic.690290420.
  • Falabella, B. J. A Study of Natural Gas Hydrates. in, 1975.
  • Verma, V. K. Gas Hydrates from Limid Hydrocarbon-Water Systems. in, 1974.
  • Galloway, T. J.; Ruska, W.; Chappelear, P. S.; Kobayashi, R. Experimental Measurement of Hydrate Numbers for Methane and Ethane and Comparison with Theoretical Values, Ind. Eng. Chem. Fund. 1970, 9, 237–243. DOI: 10.1021/i160034a008.
  • Jhaveri, J.; Robinson, D. B. Hydrates in the Methane-Nitrogen System. Can. J. Chem. Eng. 1965, 43, 75–78. DOI: 10.1002/cjce.5450430207.
  • Marshall, D. R.; Saito, S.; Kobayashi, R. Hydrates at High Pressures: Part I. Methane-Water, Argon-Water, and Nitrogen-Water Systems. AIChE J. 1964, 10, 202–205. DOI: 10.1002/aic.690100214.
  • McLeod, H. O.; Campbell, J. M. Natural Gas Hydrates at Pressures to 10,000 Psia. J. Pet. Technol. 1961, 222, 590–594. DOI: 10.2118/1566-g.
  • Kobayashi, R.; Katz, D. L. Methane Hydrate at High Pressure. Trans. AIME. 1949, 186, 66–70. DOI: 10.2118/949066-g.
  • Deaton, W. M.; Frost, E. M. Gas Hydrates and Their Relation to the Operation of Natural-Gas Pipe Lines; Printed by the American Gas Association: Texas, USA, 1946.
  • Roberts, O. L.; Brownscombe, E. R.; Howe, L. S. Constitution Diagrams and Composition of Methane and Ethane Hydrates. Oil Gas J. 1940, 39, 37–43.
  • Partoon, B.; Khan, R. F. A. A.; Sabil, K. M. Experimental Measurements and Predictions of Methane Hydrate Phase Equilibria in Synthetic Seawater. The 9th World Congress of Chemical Engineering, 18–23 August 2013, Seoul, Korea.
  • Rokach, L.; Maimon, O. Data Mining with Decision Trees: Theory and Applications; Tel-Aviv University, Israel: World Scientific Pub Co Inc., 2007.
  • Mitchell, T. M. Machine Learning; New York, USA: McGraw-Hill, Inc., 1997.
  • Glossary of Terms. Mach. Learn. 1998, 30, 271–274.
  • Quinlan, J. R. Induction of Decision Trees. Mach. Learn. 1986, 1, 81–106. DOI: 10.1007/bf00116251.
  • Quinlan, J. R. C4.5: Programs for Machine Learning; San Francisco, CA, USA: Morgan Kaufmann Publishers, 1993.
  • Weber, R. Fuzzy ID3: A Class of Methods for Automatic Knowledge Acquisition. in Proceedings of the 2nd International Conference on Fuzzy Logic and Neural Networks, Iizuka, Japan, 1992, pp. 265–268.
  • Breiman, L.; Friedman, J.; Stone, C. J.; Olshen, R. A. Classification and Regression Trees; New York: Taylor & Francis, 1984.
  • Timofeev, R. Classification and Regression Trees (CART) Theory and Applications. in, 2004.
  • Mohammadi, A. H.; Eslamimanesh, A.; Gharagheizi, F.; Richon, D. A Novel Method for Evaluation of Asphaltene Precipitation Titration Data. Chem. Eng. Sci. 2012, 78, 181–185. DOI: 10.1016/j.ces.2012.05.009.
  • Eslamimanesh, A.; Gharagheizi, F.; Mohammadi, A. H.; Richon, D. A Statistical Method for Evaluation of the Experimental Phase Equilibrium Data of Simple Clathrate Hydrates. Chem. Eng. Sci. 2012, 80, 402–408. DOI: 10.1016/j.ces.2012.06.019.
  • Rousseeuw, P. J.; Leroy, A. M. Robust Regression and Outlier Detection; John Wiley & Sons: New York, 1987.
  • Ghiasi, M. M.; Bahadori, A.; Zendehboudi, S. Estimation of the Water Content of Natural Gas Dried by Solid Calcium Chloride Dehydrator Units. Fuel. 2014, 117, 33–42. DOI: 10.1016/j.fuel.2013.09.086.
  • Ghiasi, M. M.; Bahadori, A.; Zendehboudi, S.; Chatzis, I. Rigorous Models to Optimise Stripping Gas Rate in Natural Gas Dehydration Units. Fuel. 2015, 140, 421–428. DOI: 10.1016/j.fuel.2014.09.084.
  • Ghiasi, M. M.; Bahadori, A.; Zendehboudi, S. Estimation of Triethylene Glycol (TEG) Purity in Natural Gas Dehydration Units Using Fuzzy Neural Network. J. Nat. Gas Sci. Eng. 2014, 17, 26–32. DOI: 10.1016/j.jngse.2013.12.008.
  • Xavier-de-Souza, S.; Suykens, J.A. K.;Vandewalle, J.; Bolle, D. Coupled Simulated Annealing, Systems, Man, and Cybernetics. Part B: Cybernet. IEEE Trans. 2010, 40, 320–335. DOI: 10.1109/tsmcb.2009.2020435.
  • Ghiasi, M. M.; Yarveicy, H.; Arabloo, M.; Mohammadi, A. H.; Behbahani, R. M. Modeling of Stability Conditions of Natural Gas Clathrate Hydrates using Least Squares Support Vector Machine Approach. J. Mol. Liquids. 2016, 223, 1081–1092. DOI: 10.1016/j.molliq.2016.09.009.
  • Arabloo, M.; Bahadori, A.; Ghiasi, M. M.; Lee, M.; Abbas, A.; Zendehboudi, S. A Novel Modeling Approach to Optimize Oxygen–Steam Ratios in Coal Gasification Process. Fuel. 2015, 153, 1–5. DOI: 10.1016/j.fuel.2015.02.083.
  • Ziaee, H.; Hosseini, S. M.; Sharafpoor, A.; Fazavi, M.; Ghiasi, M. M.; Bahadori, A. Prediction of Solubility of Carbon Dioxide in Different Polymers using Support Vector Machine Algorithm. J. Taiwan Inst. Chem. Eng. 2015, 46, 205–213. DOI: 10.1016/j.jtice.2014.09.015.
  • Ghiasi, M. M.; Mohammadi, A. H. Development of Reliable Models for Determination of Required Monoethanolamine (MEA) Circulation Rate in Amine Plants. Sep. Sci. Technol. 2015, 50, 2248–2256. DOI: 10.1080/01496395.2015.1024259.
  • Eslamimanesh, A.; Babaee, S.; Gharagheizi, F.; Javanmardi, J.; Mohammadi, A. H.; Richon, D. Assessment of Clathrate Hydrate Phase Equilibrium Data for CO2 + CH4/N2 + Water System. Fluid Phase Equilib. 2013, 349, 71–82. DOI: 10.1016/j.fluid.2013.03.015.
  • Ghiasi, M. M.; Hajinezhad, A.; Yousefi, H.; Mohammadi, A. H. CO2 Loading Capacity of DEA Aqueous Solutions: Modeling and Assessment of Experimental Data. Int. J. Greenhouse Gas Control. 2017, 56, 289–301. DOI: 10.1016/j.ijggc.2016.11.029.
  • Waite, W. F.; Stern, L. A.; Kirby, S. H.; Winters, W. J.; Mason, D. H. Simultaneous Determination of Thermal Conductivity, Thermal Diffusivity and Specific Heat in sI Methane Hydrate. Geophys. J. Int. 2007, 169, 767–774. DOI: 10.1111/j.1365-246x.2007.03382.x.
  • The Outlook for Energy: A View to 2040. in Exxon Mobil Corp., USA, 2016.
  • International energy outlook 2013. in U.S. Energy Information Administration, Washington, DC 20585, 2013.
  • McKelvey, V. E. Mineral Resource Estimates and Public Policy: Better Methods for Estimating the Magnitude of Potential Mineral Resources are Needed to Provide the Knowledge that Should Guide the Design of Many Key Public Policies. Am. Sci. 1972, 60, 32–40.
  • Wehenkel, L.; Ernst, D.; Geurts, P. Ensembles of Extremely Randomized Trees and Some Generic Applications. in, 2006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.