274
Views
30
CrossRef citations to date
0
Altmetric
Original Articles

Sol-gel TiO2 decorated on eggshell nanocrystal as engineered adsorbents for removal of acid dye

, , , , , & show all
Pages 911-921 | Received 04 Sep 2017, Accepted 26 Nov 2017, Published online: 18 Dec 2017

References

  • Chaudhuri, H.; Dash, S.; Ghorai, S.; Pal, S.; Sarkar, A. SBA-16: Application for the Removal of Neutral, Cationic, and Anionic Dyes from Aqueous Medium. J. Environ. Chem. Engin. 2016, 31, 157–166.
  • Chowdhury, S.; Chakraborty, S.; Saha, P. D. Removal of Crystal Violet from Aqueous Solution by Adsorption Onto Eggshells: Equilibrium, Kinetics, Thermodynamics and Artificial Neural Network Modeling. Waste Biomass Valorization 2013, 4, 655–664.
  • Elkady, M. F.; Ibrahim, A. M.; Abd El-Latif, M. M. Assessment of the Adsorption Kinetics, Equilibrium and Thermodynamic for the Potential Removal of Reactive Red Dye Using Eggshell Biocomposite Beads. Desalination 2011, 278, 412–423.
  • Slimani, R.; El Ouahabi, I.; Abidi, F.; El Haddad, M.; Regti, A.; Laamari, M. R.; Lazar, S. Calcined Eggshells as a New Biosorbent to Remove Basic Dye from Aqueous Solutions: Thermodynamics, Kinetics, Isotherms and Error Analysis. J. Taiwan Inst. Chem. Eng. 45 (2014) 78–1587.
  • Robinson, T.; Mullan, G. M.; Marchant, R.; Nigam, P. Remediation of Dyes in Textile Effluent: A Critical Review on Current Treatment Technologies with a Proposed Alternative. Bioresour. Technol. 2001, 77, 247–255.
  • Kumar, N.; Mittal, H.; Parashar, V.; Raya, S. S.; Ngil, J. C. Efficient Removal of Rhodamine 6G Dye from Aqueous Solution Using Nickel Sulphide Incorporated Polyacrylamide Grafted Gum Karaya Bionanocomposite Hydrogel. RSC Adv. 2016, 6, 21929–21939.
  • Alkan, M.; Çelikçapa, S.; Demirbas, Ö.; Do˘gan, M. Removal of Reactive Blue 221 and Acid Blue 62 Anionic Dyes from Aqueous Solutions by Sepiolite. Dyes Pigm. 2005, 65, 251–259.
  • Chiou, M.; Ho, P.; Li, Y. Adsorption of Anionic Dyes in Acid Solutions Using Chemically Cross-Linked Chitosan Beads. Dyes and Pigm. 2004, 60, 69–84.
  • Sharma, P.; Kaur, H.; Sharma, M.; Sahore, V. A Review on Applicability of Naturally Available Adsorbents for the Removal of Hazardous Dyes from Aqueous Waste. Environ. Monit. Assess. 2011, 183, 151–195.
  • Zhou, Y.; Zhang, M.; Hu, X.; Wang, X.; Niu, J.; Ma, T. Adsorption of Cationic Dyes on a Cellulose-Based Multicarboxyl Adsorbent. J. Chem. Eng. Data. 2013, 58, 413–421.
  • Seyahmazegi, E. N.; Rezaei, R. M.; Razmi, H. Multiwall Carbon Nanotubes Decorated on Calcined Eggshell Waste as a Novel Nano-Sorbent: Application for Anionic Dye Congo Red Removal. Chem. Eng. Res. Des. 2016, 109, 824–834.
  • Shoueir, K. R.; Sarhan, A. A.; Atta, A. M.; Akl, M. A. Macrogel and Nanogel Networks Based on Crosslinked Poly (vinyl alcohol) for Adsorption of Methylene Blue from Aqua System. Environ. Nanotechnol. Monit. Manage. 2016, 5, 62–73.
  • Jiang, X.; Qi, Y. J.; Wang, S. G.; Tian, X. Z. New Amphoteric Flocculant Containing Beta-Cyclodextrin, Synthesis, Charaterization and Decolorization Properties. J. Hazard. Material. 2010, 173, 298–304.
  • Liu, C. H.; Wu, J. S.; Chiu, H. C.; Suen, S. Y.; Chu, K. H. Removal of Anionic Reactive Dyes from Water Using Anion Exchange Membranes as Adsorbers. Water. Res. 2007, 41, 1491–1500.
  • Mahmoodi, N. M.; Arami, M.; Limaee, N. Y.; Tabrizi, N. S. Decolorization and Aromatic Ring Degradation Kinetics of Direct Red 80 by UV Oxidation in the Presence of Hydrogen Peroxide Utilizing TiO2 as a photocatalyst. Chem. Eng. J. 2005, 112, 191–196.
  • Davoodi, S.; Marahel, F.; Ghaedi, M.; Roosta, M.; Hekmati, J. Tin Oxide Nanoparticles Loaded on Activated Carbon as Adsorbent for Removal of Murexide, Desalin. Water Treat. 2014, 52, 7282–7292.
  • Samadi, S.; Khalilian, F.; Tabatabaee, A. Synthesis, Characterization and Application of Cu–TiO2/chitosan Nanocomposite Thin Film for the Removal of Some Heavy Metals from Aquatic Media. J. Nanostruct. Chem. 2014, 4, 84–92.
  • Harraz, F. A.; Abdel-Salam, O. E.; Mostafa, A. A.; Mohamed, R. M.; Hanafy, M. Rapid Synthesis of Titania–Silica Nanoparticles Photocatalyst by a Modified Sol–Gel Method for Cyanide Degradation and Heavy Metals Removal. J. Alloys Compd. 2013, 551, 1–7.
  • Mahmoodi, N. M.; Abdi, J.; Bakeshloo, Z. A.; Abdi, J. Synthesis and characterization of the functionalized nanoparticle and dye removal modeling, Desalin. Water Treat. 57 (2016) 1–12.
  • Meng, X.; Deng, D. Trash to Treasure: Waste Eggshells Used as reactor and Template for Synthesis of Co9S8 Nanorod Arrays on Carbon Fibers for Energy Storage. Chem. Mater. 2016, 11, 3897–3904.
  • Wang, S.; Wei, M.; Huang, Y. Biosorption of Multifold Toxic Heavy Metal Ions from Aqueous Water onto Food Residue Eggshell Membrane Functionalized with Ammonium Thioglycolate. J. Agric. Food Chem. 2013, 61, 4988–4996.
  • Ho, W. F.; Hsu, H. C.; Hsu, S. K.; Hung, C. W.; Wu, S. C. Calcium Phosphate Bioceramics Synthesized from Eggshell Powders Through a Solid State Reaction. Ceram. Int. 2013, 39, 6467–6473.
  • Li, Y.; Xin, S.; Bian, Y.; Xu, K.; Han, C.; Dong, L. The Physical Properties of Poly(l-lactide) and Functionalized Eggshell Powder Composites. Int. J. Biol. Macromol. 2016, 85, 63–73.
  • Kang, D. J.; Pal, K.; Park, S. J.; Bang, D. S.; Kim, J. K. Effect of Eggshell and Silk Fibroin on Styrene–Ethylene/Butylene–Styrene as Bio-Filler. Mater. Design. 2010, 31, 2216–2219.
  • Hassan, T. A.; Rangari, V. K.; Rana, R. K.; Jeelani, S. Sonochemical Effect on Size Reduction of CaCO3 Nanoparticles Derived from Waste Eggshells. Ultrason. Sonochem. 2013, 20, 1308–1315.
  • Rahman, M. M.; Netravali, A. N.; Tiimob, B. J.; Rangari, V. K. Bioderived “Green” Composite from Soy Protein and Eggshell Nanopowder. ACS Sustainable Chem. Eng. 2014, 2, 2329–2337.
  • Pikera, A.; Tabaha, B.; Perkasa, N.; Gedanken, A. A Green and Low-Cost Room Temperature Biodiesel Production Method from Waste Oil Using Egg Shells as Catalyst. Fuel. 2016, 182, 34–41.
  • Liu, B.; Huang, Y. Polyethyleneimine Modified Eggshell Membrane as a Novel Biosorbent for Adsorption and Detoxification of Cr(VI) from Water. J. Mater. Chem. 2011, 21, 17413–17418.
  • Markovski, J. S.; Marković, D. D.; Đokić, V. R.; Mitrić, M.; Ristić, M. Đ.; Onjia, A. E.; Marinković, A. D. Arsenate Adsorption on Waste Eggshell Modified by Goethite, α-MnO2 and Goethite/α-MnO2. Chem. Eng. J. 2014, 237, 430–442.
  • Momenbeik, F.; Riahi, F. T. Chemically Modified Eggshell Membrane as an Adsorbent for Solid-Phase-Extraction of Morphine Followed by High Performance Liquid Chromatography Analysis. Anal. Bioanal. Chem. Res. 2014, 1, 108–116.
  • Aldaco, A. G.; Montoya, V. H.; Petriciolet, A. B.; Moran, M. A. M.; Castillo, D. I. M. Improving the Adsorption of Heavy Metals from Water Using Commercial Carbons Modified with Egg Shell Wastes. Ind. Eng. Chem. Res. 2011, 50, 9354–9362.
  • Şişmanoğlu, T.; Pozan, G. S. Adsorption of Congo Red from Aqueous Solution Using Various TiO2 Nanoparticles. Desalin. Water Treat. 2016, 57(28), 13318–13333.
  • Rusu, M. M.; Wahyuono, R. A.; Fort, C. I.; Dellith, A.; Dellith, J.; Ignaszak, A.; Vulpoi, A.; Danciu, V.; Dietzek, B.; Baia, L. Impact of Drying Procedure on the Morphology and Structure of TiO2 Xerogels and the Performance of Dye Sensitized Solar Cells. J. Sol-Gel. Sci. Technol. 2016, 81(3), 693–703. DOI: 10.1007/s0971-0164237-3.
  • Dahlan, D.; Sartika, N.; Namigo, E. L.; Taer, E. Effect of TiO2 on Duck Eggshell Membrane as Separators in Supercapacitor Applications. Mate. Sci. Forum. 2015, 827, 151–155.
  • Tiimob, B. J.; Jeelani, S.; Rangari, V. K. Eggshell Reinforced Biocomposite-An Advanced “Green” Alternative Structural Material. J. Appl. Polym. Sci. 2016, 133, 43124–43134. DOI: 10.1002/APP.43124.
  • Margan, P.; Haghighi, M. Hydrothermal-Assisted Sol–Gel Synthesis of Cd-Doped TiO2 Nanophotocatalyst for Removal of Acid Orange from Wastewater. J. Sol-Gel Sci. Technol. 2016, 81(2), 556–559. DOI: 10.1007/s10971-016-4217-7.
  • Cree, D.; Rutter, A. Sustainable Bio-Inspired Limestone Eggshell Powder for Potential Industrialized Applications. ACS Sustainable Chem. Eng. 2015, 3, 941–949.
  • Zulfikar, M. A.; Novita, E.; Hertadi, R.; Djajanti, S. D. Removal of Humic Acid from Peat Water Using Untreated Powdered Eggshell as a Low Cost Dsorbent. Int. J. Environ. Sci. Technol. 2013, 10, 1357–1366.
  • Eletta, O. A.; Ajayi, O. A.; Gunleye, O. O.; Akpan, I. C. Adsorption of Cyanide from Aqueous Solution Using Calcinated Eggshells: Equilibrium and Optimisation Studies. J. Environ. Chem. Eng. 2016, 4, 1367–1375.
  • Zulfikar, M. A.; Setiyanto, H. Adsorption of Congo Red from Aqueous Solution Using Powdered Eggshell. Int. J. Chem. Tech. Res. 2013, 5, 1532–1540.
  • Chaudhuri, H.; Dash, S.; Sarkar, A. SBA-15 Functionalised with High Loading of Amino or Carboxylate Groups as Selective Adsorbent for Enhanced Removal of Toxic Dyes from Aqueous Solution. New J. Chem. 2016, 40, 3622–3634.
  • Van Dyk, J. C.; Melzer, S.; Sobiecki, A. Mineral Matter Transformation During Sasol-Lurgi Fixed Bed Dry Bottom Gasification Utilization of HT-XRD and FactSage Modelling. Min. Eng. 2006, 19, 1126–1135.
  • Mahdavi, S.; Jalali, M.; Afkhami, A. Heavy Metals Removal from Aqueous Solutions Using TiO2, MgO, and Al2O3 Nanoparticles. Chem. Eng. Commun. 2013, 200, 448–470.
  • Jamwal, H. S.; Kumari, S.; Chauhan, G. S.; Ahn, J. H.; Reddy, N. S. New Silica–Titania Based Polymeric Hybrid Materials for the Removal of Cu(II) Ions from their Aqueous Solutions. J. Environ. Chem. Eng. 2016, 4, 2518–2528.
  • Shoueir, K. R.; Atta, A. M.; Sarhan, A. A.; Akl, M. A. Synthesis of Monodisperse Core Shell PVA@ P (AMPS-co-NIPAm) Nanogels Structured for Pre-Concentration of Fe (III) Ions. Environ. Techno. 2017, 38, 967–978.
  • Zhang, W.; Yang, H.; Dong, L.; Yan, H.; Li, H.; Jiang, Z.; Kan, X.; Li, A.; Cheng, R. Efficient Removal of Both Cationic and Anionic Dyes from Aqueous Solutions using a Novel Amphoteric Straw-based Adsorbent. Carbohydr. Polym. 2012, 90, 887–893.
  • Langmuir, I. The Constitution and Fundamental Properties of Solids and Liquids. J. Am. Chem. Soc. 1916, 38, 2221–2295.
  • Bakhshi, H.; Darvishi, A. Preparation and Evaluation of Hydrogel Composites Based on Starch-g-PNaMA/Eggshell Particles as Dye Biosorbent. Desalin. Water Treat. 2016, 57, 18144–18156.
  • Shamik, C.; Das, P. Utilization of a Domestic Waste-Eggshells for Removal of Hazardous Malachite Green from Aqueous Solutions. Environ. Prog. Sustain. Energy. 2012, 31, 415–425.
  • Arami, M.; Limaee, N. Y.; Mahmoodi, N. M. Investigation on the Adsorption Capability of Egg Shell Membrane towards Model Textile Dyes. Chemosphere. 2006, 65, 1999–2008.
  • Saha, P. D.; Chowdhury, S.; Mondal, M.; Sinha, K. Biosorption of Direct Red 28 (Congo Red) from aqueous solutions by eggshells: Batch and column studies. Sep. Sci. Technol. 2012, 47, 112–123.
  • Rasoulifard, M. H.; Dorraji, M. S.; Ghadim, A. R.; Babaeinezhad, N. K. Visible-Light Photocatalytic Activity of Chitosan/Polyaniline/CdS Nanocomposite: Kinetic Studies and Artificial Neural Network Modeling. Appl. Catal. A. 2016, 514, 60–70.
  • Kimling, M. C.; Chen, D.; Caruso, R. A. Temperature-Induced Modulation of Mesopore Size in Hierarchically Porous Amorphous TiO2/ZrO2 Beads for Improved Dye Adsorption Capacity. J. Mater. Chem. A. 2015, 7, 3768–3776.
  • Tao, Y.; L.e, Y.; Pan, J.; Wang, Y.; Tang, B. Removal of Pb (II) from Aqueous Solution on Chitosan/TiO2 Hybrid Film. J. Hazard. Mater. 2009, 161, 718–722.
  • Shirmardi, M.; Mahvi, A. H.; Mesdaghinia, A.; Nasseri, S.; Nabizadeh, R. Adsorption of Acid Red18 Dye from Aqueous Solution using Single-Wall Carbon Nanotubes: Kinetic and Equilibrium. Desalin. Water Treat. 2013, 51, 6507–6516.
  • Yu, J. X.; Chi, R. A.; Guo, J.; Zhang, Y. F.; Xu, Z. G.; Xiao, C. Q. Desorption and Photodegradation of Methylene Blue from Modified Sugarcane Bagasse Surface by Acid TiO2 Hydrosol. Appl. Surf. Sci. 2012, 258, 4085–4090.
  • Arami, M.; Limaee, N. Y.; Mahmoodi, N. M. Investigation on the Adsorption Capability of Egg Shell Membrane towards Model Textile Dyes. Chemosphere. 2006, 65, 1999–2008.
  • Abbasizadeh, S.; Keshtkar, A. R.; Mousavian, M. A. Preparation of a Novel Electrospun Polyvinyl Alcohol/Titanium Oxide Nanofiber Adsorbent Modified with Mercapto Groups for Uranium(VI) and Thorium(IV) Removal from Aqueous Solution. Chem. Eng. J. 2013, 220, 161–71.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.