117
Views
7
CrossRef citations to date
0
Altmetric
Articles

Experimental measurement and modeling study for estimation of wax disappearance temperature

, , &
Pages 161-170 | Received 23 Jan 2018, Accepted 31 Mar 2018, Published online: 20 Mar 2019

References

  • Bai, Y.; Bai, Q. Subsea Pipelines and Risers. Elsevier Sci. 2005, 1st Edition, No. of pages: 840, ISBN 9780080445663.
  • Misra, S.; Baruah, S.; Singh, K. Paraffin Problems in Crude Oil Production and Transportation: A Review. SPE Prod. & Oper. 1995 10(1), 50–54.
  • Jalalnezhad, M. J.; Kamali, V. Development of an Intelligent Model for Wax Deposition in Oil Pipeline. J. Petrol. Explor. & Prod. Technol. 2016, 6(1), 129–133.
  • Metivaud, V.; Rajabalee, F.; Oonk, H. A. J.; Mondieig, D.; Haget, Y. Complete Determination of the Solid (RI)-Liquid Equilibria of Four Consecutive n-Alkane Ternary Systems in the Range C14H30-C21H44 Using only Binary Data. Can. J. Chem. 1999, 77, 332–339.
  • Daridon, J. L.; Pauly, J.; Milhet, M. High Pressure Solid–Liquid Phase Equilibria in Synthetic Waxes. J. Phys. Chem. Chem. Phys. 2002, 4(18), 4458–4461.
  • Ji, H. Y.; Tohidi, B.; Danesh, A.; Todd, C. A. Wax Phase Equilibria: Developing a Thermodynamic Model Using a Systematic Approach. J. Fluid Phase Equilib. 2004, 216, 201–217.
  • Pauly, J.; Daridon, J. L.; Coutinho, J. A. P. Solid Deposition as a Function of Temperature in the nC10 + (nC24-nC25-nC26) System. J. Fluid Phase Equilib. 2004, 224, 237–244.
  • Milhet, M.; Pauly, J.; Coutinho, J.A. P.; Dirand, M.; Daridon, J. L. Liquid-Solid Equilibria Under High Pressure of Tetradecane + Pentadecane and Tetradecane + Hexadecane Binary Systems. J. Fluid Phase Equilib. 2005, 235, 173–181.
  • Paso, K. Wax Deposition and Aging in Sub-Sea Flow Lines: A Component-based Investigation; Ann Arbor, Michigan: University of Michigan, 2004.
  • Ronningsen, H. P.; Somme, B. F.; Pedersen, K. S. An Improved Thermodynamic Model for Wax Precipitation: Experimental Foundation and Application. Paper Presented at 8th International Conference on Multiphase 97, Cannes, France, June 18–20, 1997.
  • Rønningsen, H. P.; Bjørndal, B.; Hansen, A. B.; Pedersen, W. B. Wax Precipitation from North Sea Crude Oils. 1. Crystallization and Dissolution Temperatures, and Newtonian and Non-Newtonian Flow Properties. Energy Fuels 1991, 5, 895–908.
  • Hammami, A.; Ratulowski, J.; Coutinho, J.A. P. Cloud Points: Can we Measure or Model Them. J. Petrol. Sci. Technol. 2003, 21, 345–358.
  • Nitin, V. B.; Anil, K. M. Measurement and Prediction of the Phase Behavior of Wax-Solvent Mixtures: Significance of the Wax Disappearance Temperature. Ind. Eng. Chem. Res. 2004, 43, 3451–3461.
  • Zhang, W.; Jia, M. P.; Zhu, L.; Yan, X. A. Comprehensive Overview on Computational Intelligence Techniques for Machinery Condition Monitoring and Fault Diagnosis. Chinese J. Mech. Eng. 2017, 30(4), 782–795.
  • Mohammadi, A. H.; Belandria, V.; Richon, D. Use of an Artificial Neural Network Algorithm to Predict Hydrate Dissociation Conditions for Hydrogen + Water And Hydrogen+Tetra-Nbutyl Ammonium Bromide + Water Systems. Chem. Eng. Sci. 2010, 65(14), 4302–4305.
  • Hagan, M. T.; Demuth, H. B.; Beal, M. NeuralNetworkDesign; PWS Publishing Company: Boston, 1996.
  • Haykin, S. Neural Networks - A Comprehensive Foundation, 2nd ed.; Hamilton, Ontario, Canada: McMaster University, 1994.
  • Harrington, P. B. Sigmoid Transfer Functions in Backpropagation Neural Networks. Anal. Chem. 1993, 65, 2167–2168.
  • Dorofki, M.; Elshafie, A. H.; Jaafar, O.; Karim, O. A.; Mastura, S. Comparison of Artificial Neural Network Transfer Functions Abilities to Simulate Extreme Runoff Data. Int. Proc. Chem. Biol. Environ. Eng. 2012, 33, 39–3344.
  • Ali, S.; Smith, K. A. On Learning Algorithm Selection for Classification. App. Soft Computing. 2006, 6, 119–138.
  • Sharma, B.; Venugopalan, K. Comparison of Neural Network Training Functions for Hematoma Classification in Brain CT Images. IOSR J. Comp. Eng. 2014, 16(1), 31–35.
  • Obanijesu, E. O.; Omidiora, E. O. Artificial Neural Network’s Prediction of Wax Deposition Potential of Nigerian Crude Oil for Pipeline Safety. J. Petrol. Sci. & Technol. 2008, 26(16), 1977–1991.
  • Oladiipo, A.; Bankole, A.; Taiwo, E. Artificial Neural Network Modeling of Viscosity and Wax Deposition Potential of Nigerian Crude Oil and Gas Condensates. This Paper was Prepared for Presentation at the 33rd Annual SPE International Technical Conference and Exhibition in Abuja, Nigeria, August 3–5, SPE 128600, 2009.
  • Wei, Y.; Wu, M.; Zhao, L. Wax Deposition Rate Model for Crude Oil Pipeline Based on Neural Network. Sixth International Conference on Natural Computation (ICNC 2010) Desc: Proceedings of a meeting held 10–12 August 2010, Yantai, China.
  • Adeyemi, B. J.; Sulaimon, A. A. Predicting Wax Formation Using Artificial Neural Network. This Paper was Prepared for Presentation at the 2012 SPE Nigerian Annual International Conference and Exhibition held in Abuja, Nigeria, 6–8 August, 2012.
  • Lashkarbolooki, M.; Vaferi, B.; Mowla, D. Using Artificial Neural Network to Predict the Pressure Drop in a Rotating Packed Bed. J. Sep. Sci. and Technol. 2012, 47, 2450–2459.
  • Rostami, H.; Shahkarami, A.; Azin, R. The Prediction of the Density of Undersaturated Crude Oil Using Multilayer Feed-Forward Back-Propagation Perceptron. Petrol. Sci. Technol. 2012, 30, 89–99.
  • Rostami, H.; Azin, R.; Dianat, R. Prediction of Undersaturated Crude Oil Density Using Gaussian Process Regression. J. Petrol. Sci. Technol. 2013, 31, 418–427.
  • Kamari, A.; Khaksar-Manshad, A.; Gharagheizi, F.; Mohammadi, A. H.; Ashoori, S. A Robust Model for Determination of Wax Deposition in Oil Systems. Ind. Eng. Chem. Res. 2013, 1–36.
  • Moradi, G.; Mohadesi, M.; Moradi, M. R. Prediction of wax disappearance temperature using artificial neural networks. J. Petrol. Sci. and Eng. 2013, 108, 74–81.
  • Lashkarbolooki, M.; Seyfaee, A.; Esmaeilzadeh, F.; Mowla, D. Prediction of Chemical Inhibitors Efficiency for Reducing Deposition Thickness Using Artificial Neural Network. J. Disp. Sci. & Technol. 2014, 35, 1393–1400.
  • Xie, Y.; Xing, Y. A Prediction Method for the Wax Deposition Rate Based on a Radial Basis Function Neural Network. Petrol 2016, 3, 237–241.
  • ASTM D7042–16e3. Standard Test Method for Dynamic Viscosity and Density of Liquids by Stabinger Viscometer (and the Calculation of Kinematic Viscosity); ASTM International: West Conshohocken, PA, 2016.
  • Cavett, R. H. Physical Data for Distillation Calculations, Vapor-Liquid Equilib. Proceedings of the API Diu of Refining Meeting, San Francisco, May 15, 1964.
  • Riazi, M. R.; Daubert, T. E. Simplify Property Predictions. Hydrocarbon Processing, Gulf Publishing, U.S.A. 59(3), 115–116.
  • Pan, H.; Firoozabadi, A.; Fotland, P. Pressure and Composition Effect on Wax Precipitation: Experimental Data and Model Results. SPE Prod. Oper. SPE 36740-PA. 1997, 12(4), 250–258.
  • Ghanaei, E.; Esmaeilzadeh, F.; Fathi Kaljahi, J. A New Predictive Thermodynamic Model in the Wax Formation Phenomena at High Pressure Condition. Fluid Phase Equilib. 2007, 254, 126–137.
  • Moradi, G. R.; Mohadesi, M.; Mousavi, H. S. Modification of Predictive Wilson Model for Prediction of Wax Disappearance Temperature at High Pressure Condition. Proceedings of the 13th Iranian National Chem. Eng. Congress &1st International Regional Chemical and Petroleum Engineering, 25–28 October. Kermanshah, Iran, 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.