313
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Bioremoval of mercury (II) from aqueous solutions by Phragmites australis: Kinetic and equilibrium studies

ORCID Icon, , &
Pages 1790-1799 | Received 09 Jan 2018, Accepted 24 Mar 2018, Published online: 13 Aug 2018

References

  • Bradl, H. B. Heavy Metals in the Environment; Netherlands: Elsevier Academic Press, 2005.
  • Beldowski, J.; Pempkowiak, J. Horizontal and Vertical Variabilities of Mercury Concentration and Speciation in Sediments of the Gdansk Basin, Southern Baltic Sea. Chemosphere. 2003, 52, 645–654.
  • Mishra, V.-K.; Tripathi, B.-D.; Kim, K. H. Removal and Accumulation of Mercury by Aquatic Macrophytes from an Open Cast Coal Mine Effluent. J. Hazard. Mater. 2009, 172,749–754.
  • Landis, W.; Gand Yu, M.-H. Introduction to Environmental Toxicology: Impacts of Chemicals Upon Ecological Systems; CRC Press LLC: Boca Raton, FL, 1999.
  • Mishra, V.-K.; Upadhyaya, A.-R.; Pathak, V.; Tripathi, B.-D. Phytoremediation of Mercury and Arsenic from Tropical Opencast Coalmine Effluent Through Naturally Occurring Aquatic Macrophytes Water, Air, Soil Pollut. 2008, 192, 303–314.
  • Rocha, C.-G.; Zaia, D.-A.-M.; Da Silva Alfaya, R.-V.-A.; Da Silva Alfaya, A. Use of Rice Straw as Biosorbent for Removal of Cu(II), Zn(II), Cd(II) and Hg(II) Ions in Industrial Effluents J. Hazard. Mater. 2009, 166, 383–388.
  • Anirudhan, T.-S.; Divya, L.; Ramachandran. M. Mercury (II) Removal from Aqueous Solutions and Wastewaters Using a Novel Cation Exchanger Derived from Coconut Coir Pith and Its Recovery. J. Hazard. Mater. 2008, 157, 620–627.
  • Aslam, M.; Rais, S.; Alam, M.; Pugazhendi, A. Adsorption of Hg(II) from Aqueous Solution Using Adulsa (Justicia Adhatoda) Leaves Powder: Kinetic and Equilibrium Studies. J. Chem. 2013, 1–11.
  • Jeon, C; Park, K.-H. Adsorption and Desorption Characteristics of Mercury(II) Ions Using Aminated Chitosan Bead. Water Res. 2005, 39(16),3938–3944.
  • Navarro, R.-R.; Wada, S.; Tatsumi, K. Heavy Metal Precipitation by Polycation-Polyanion Complex of PEI and Its Phosphono Methylated Derivative. J. Hazard. Mater. 2005, 123(1-3), 203–209.
  • Fu, F.; Wang, Q. Removal of Heavy Metal Ions from Wastewaters: A Review. J. Environ. Manage. 2011, 92(3), 407–418.
  • Metin, A.-Ü.; Alver, E. Fibrous Polymer-Grafted Chitosan/Clay Composite Beads As a Carrier for Immobilization of Papain and Its Usability for Mercury Elimination. Bioprocess Biosyst. Eng. 2016, 39, 1137–1149.
  • Zeroual, Y.; Moutaouakkil, A.; Zohra Dzairi, F.; Talbi, M.; Chung, P.-U.; Lee, K.; Blaghen, M. Biosorption of Mercury from Aqueous Solution by Ulva Lactuca Biomass. Bioresour. Technol. 2003, 90, 349–351.
  • Melgar, M.-J.; Alonso, J.; Garcia, M.-A. Removal of Toxic Metals from Aqueous Solutions by Fungal Biomass of Agaricus Macrosporus. Sci. Total Environ. 2007, 385, 12–19.
  • Eom, Y.; Won, J.-H.; Ryu, J.-Y.; Lee, T.-G. Biosorption of Mercury(II) Ions from Aqueous Solution by Garlic (Allium Sativum L.) powder. Korean J. Chem. Eng. 2011, 28(6), 1439–1443,
  • Lacher, C.; Smith, R. W. Sorption of Hg (II) by Potamogeton Natans dead biomass. Miner. Eng. 2002, 15, 187–191.
  • Karthikeyan, S.; Balasubramanian, R.; Iyer, C.-S.-P. Evaluation of Marine Algae Ulva Fascita and Sargassum sp. for the Biosorption of Cu(II) from Aqueous Solution. Bioresour. Technol. 2007, 98, 452–455.
  • Sarı, A.; Tuzen, M.; Uluozlu, O.-D.; Soylak, M. Biosorption of Pb(II) and Ni(II) from Aqueous Solution by Lichen (Cladonia Furcata) Biomass. Biochem. Eng. J. 2007, 37, 151–158.
  • Khambhaty, Y.; Mody, K.; Basha, S.; Jha, B. Kinetics, Equilibrium and Thermodynamic Studies on Biosorption of Hexavalent Chromium by Dead Fungal Biomass of Marine Aspergillus niger. Chem. Eng. J. 2009, 145, 489–495.
  • Mao, J.; Won, S. W.; Vijayaraghavan, K.; Yun, Y.-S. Surface Modification of Corynebacterium Glutamicum for Enhanced Reactive Red 4 Biosorption. Bioresour. Technol. 2009, 100, 1463–1466.
  • Won, S.-W.; Mao, J.; Kwak, I.-S.; Sathishkumar, M.; Yun, Y.-S. Platinum Recovery from ICP Wastewater by a Combined Method of Biosorption and Incineration. Bioresour. Technol. 2010, 101, 1135–1140.
  • Bonanno, G.; Giudice, R.-L. Heavy Metal Bioaccumulation by the Organs of Phragmites Australis (Common Reed) and their Potential Use as Contamination Indicators. Ecol. Indic. 2010, 10, 639–645.
  • Southichak, B.; Nakano, K.; Nomura, M.; Chiba, N.; Nishimura, O. Phragmites Australis: A Novel Biosorbent for the Removal of Heavy Metals from Aqueous Solution. Water Res. 2006, 40(12), 2295–2302.
  • Lenssen, J.; Menting, F.; van der Putten, W.; Blom, K. Control of Plant Species Richness and Zonation of Functional Groups Along a Freshwater Flooding Gradient. OIKOS. 1999, 86, 523–534.
  • Duman, F.; Cicek, M.; Sezen, G. Seasonal Changes of Metal Accumulation and Distribution in Common Club Rush (Schoenoplectus Lacustris) and Common Reed (Phragmites Australis). Ecotoxicology. 2007, 16, 457–463.
  • Cicero-Fernández, D.; Peña-Fernández, M.; Expósito-Camargo, J.-A.; Antizar-Ladislao, B. Long-Term (Two Annual Cycles) Phytoremediation of Heavy Metal-Contaminated Estuarine Sediments by Phragmites Australis. N. Biotechnol. 2016, 38(Pt B), 56–64.
  • Kankılıç, G.-B.; Metin, A.-Ü.; Tüzün, I. Phragmites Australis: An Alternative Biosorbent for Basic Dye Removal. Ecol. Eng. 2016, 86, 85–94.
  • Gardea-Torresdey, J.-L.; Tiemann, K.-J.; Gonzalez, J.-H.; Rodrigez, O.; Gamez, G. Phytofiltration of Hazardous Cadmium, Chromium, Lead and Zinc Ions by Biomass Medicago Sativa (Alfalfa). J. Hazard. Mater. 1998, 57, 29–39.
  • Lagergren, S. About the Theory of So-Called Adsorption of Soluble Substances Kung. Sven. Vetenskapsakad Handl. 1898, 24, 1–6.
  • Ho, Y.-S.; McKay, G. Pseudo-Second Order Model for Sorption Processes. Process Biochem. 1999, 34(5), 451–465.
  • Toupin, M.; Belanger, D. Spontaneous Functionalization of Carbon Black by Reaction with 4-Nitrophenyldiazonium Cations Langmuir, 2008, 24, 1910–1917.
  • Sutcu, H. Pyrolysis of Phragmites Australis and Characterization of Liquid and Solid Products. J. Ind. Eng. Chem. 2008, 14, 573–577.
  • Plaza, J.; Viera, M.;. Donati, E.; Guibal E. Biosorption of Mercury by Macrocystis Pyrifera and Undaria Pinnatifida: Influence of Zinc, Cadmium and Nickel. J. Environ. Sci. 2011, 23(11), 1778–1786.
  • Tuzen, M.; Sari, A.; Mendil, D.; Soylak, M. Biosorptive Removal of Mercury(II) from Aqueous Solution Using Lichen (Xanthoparmelia Conspersa) Biomass: Kinetic and Equilibrium Studies J. Hazard. Mater. 2009, 169, 263–270.
  • Yao, X.; Wang, H.; Ma, Z.; Liu, M.; Zhao, X.; Jia, D. Adsorption of Hg(II) from Aqueous Solution using Thiourea Functionalized Chelating Fiber. Chin. J. Chem. Eng. 2016 24(10), 1344–1352.
  • Saman, N.; Johari, K.; Song, S. T.; Kong, H.; Cheu S.-C.; Mat, H. High Removal Efficiency of Hg(II) and MeHg(II) from Aqueous Solution by Coconut Pith—Equilibrium, Kinetic and Mechanism Analyses. J. Environ. Chem. Eng. 2016, 4(2), 2487–2499.
  • Bunluesin, S.; Kruatrachue, M.; Pokethitiyook, P.; Upatham, S.; Lanza, G.-R. Batch and Continuous Packed Column Studies of Cadmium Biosorption by Hydrilla Verticillata Biomass. J. Biosci. Bioeng. 2007, 103(6), 509–513.
  • Schneider, I.-A.-H.; Rubio, J. Sorption of Heavy Metal Ions by the Nonliving Biomass of Freshwater Macrophytes. Environ. Sci. Technol. 1999, 33(13), 2213–2217.
  • Honeyman, B.-D.; Santschi, P.-H. Metals in Aquatic Systems. Environ. Sci. Technol. 1988, 22(8), 862–871.
  • Atun, G.; Hisarlı, G.; Kurtoğlu, A.-E.; Ayar, N. A Comparison of Basic Dye Adsorption Onto Zeolitic Materials Synthesized from Fly Ash. J. Hazard. Mater. 2011, 187(1), 562–573.
  • Alver, E.; Metin, A.-Ü. Anionic Dye Removal from Aqueous Solutions Using Modified Zeolite: Adsorption Kinetics and Isotherm Studies. Chem. Eng. J. 2012, 200, 59–67.
  • Mane, V.-S.; Deo Mall, I.; Srivastava, V.-C. Kinetic and Equilibrium Isotherm Studies for the Adsorptive Removal of Brilliant Green Dye from Aqueous Solution by Rice Husk Ash. J. Environ. Manage. 2007, 84(4), 390–400.
  • Zhou, L.; Liu, Z.; Liu, J.; Huang, Q. Adsorption of Hg(II) from Aqueous Solution by Ethylenediamine-Modified Magnetic Crosslinking Chitosan Microspheres. Desalination. 2010, 258(1), 41–47.
  • Mpofu, P.; Addai-Mensah, J.; Ralston, J. Temperature Influence of Nonionic Polyethylene Oxide and Anionic Polyacrylamide on Flocculation and Dewatering Behavior of Kaolinite Dispersions. J. Colloid Interface Sci. 2004, 271(1), 145–156.
  • Donia, A.-M.; Atia, A.-A.; El-Boraey, H.-A.; Mabrouk, D.-H. Adsorption of Ag(I) on Glycidyl Methacrylate/N,N′-Methylene Bis-Acrylamide Chelating Resins with Embedded Iron Oxide. Sep. Purif. Technol. 2006, 48(3) 281–287.
  • Greluk, M.; Hubicki, Z. Kinetics, Isotherm and Thermodynamic Studies of Reactive Black 5 Removal by Acid Acrylic Resins. Chem. Eng. J. 2010, 162(3), 919–926.
  • Yang, H.; Feng, Q. Characterization of Pore-Expanded Amino-Functionalized Mesoporous Silicas Directly Synthesized with Dimethyldecylamine and Its Application for Decolorization of Sulphonated Azo Dyes. J. Hazard. Mater. 2010, 180(1), 106–114.
  • Monier, M.; Abdel-Latif, D.-A. Preparation of Cross-Linked Magnetic Chitosan-Phenylthiourea Resin for Adsorption of Hg(II), Cd(II) and Zn(II) Ions from Aqueous Solutions. J. Hazard. Mater. 2012, 209, 240–249.
  • Metin, A.-Ü.; Çiftçi, H.; Alver, E. Efficient Removal of Acidic Dye Using Low-Cost Biocomposite Beads. Ind. Eng. Chem. Res. 2013, 52(31), 10569–10581.
  • Gupta, S.; Babu, B.-V. Removal of Toxic Metal Cr(VI) from Aqueous Solutionsusing Sawdust as Adsorbent: Equilibrium, Kinetics and Regeneration Studies. Chem. Eng. J. 2009, 150(2), 352–365.
  • Raza, M.-H.; Sadiq, A.; Farooq, U.; Athar, M.; Hussain, T.; Mujahid, A.; Salman, M. J. Chem. 2015, 1–12.
  • Gupta, S.; Babu, B.-V. Utilization of Waste Product (Tamarind Seeds) for Theremoval of Cr(VI) from Aqueous Solutions: Equilibrium, Kinetics, and Regeneration Studies. J. Environ. Manage. 2009, 90, 3013–3022.
  • Zhao, M.; Duncan, J.-R.; van Hille R.-P. Removal and Recovery of Zinc from Solution and Electroplating Effluent using Azolla Filiculoides. Water Res. 1999, 33(6), 1516–1522.
  • Keskinkan, O.; Goksu, M.-Z.-L.; Basibuyuk, M.; Forster, C.-F. Heavy Metal Adsorption Properties of a Submerged Aquatic Plant (Ceratophyllum Demersum). Bioresour. Technol. 2004, 92(2), 197–200.
  • Puranik, P.-R.; Paknikar, K.-M. Biosorption of Lead, Cadmium, and Zinc by Citrobacter Strain MCM B-181: Characterization Studies. Biotechnol. Progr. 1999, 15(2), 228–237.
  • Ho, Y.-S.; Wase, D.-A.-J.; Forster, C.-F. Kinetic Studies of Competitive Heavy Metal Adsorption by Sphagnum Moss Peat. Environ. Technol. 1996, 17(1), 71–77.
  • Sheng, P.-X.; Yen-Peng, T.; Chen, P.-J. Biosorption of Heavy Metal Ions (Pb, Cu, and Cd) from Aqueous Solutions by the Marine Alga Sargassum sp. in Single- and Multiple-Metal Systems. Ind. Eng. Chem. Res. 2007, 46, 2438–2444.
  • Kumar, A.-S.-K.; Jiang, S.-J.; Tseng, W.-L. Facile Synthesis and Characterization of Thiol-Functionalized Graphene Oxide as Effective Adsorbent for Hg (II). J. Environ. Chem. Eng. 2016, 4(2), 2052–2065.
  • Ghodbane, I.; Hamdaoui, O. Removal of Mercury(II) from Aqueous Media Using Eucalyptus Bark: Kinetic and Equilibrium Studies. J. Hazard. Mater. 2008, 160(2-3), 301–309.
  • Meena, A.-K.; Kadirvelu, K.; Mishra, G.-K.; Rajagopal, C.; Nagar, P.-N. Adsorptive Removal of Heavy Metals from Aqueous Solution by Treated Sawdust (Acacia Arabica). J. Hazard. Mater. 2008, 150, 604–611.
  • Shun-Xing, L.; Feng-Ying, Z.; Yang, H.; Jian-Cong, N. Thorough Removal of Inorganic and Organic Mercury from Aqueous Solutions by Adsorption on Lemna Minor Powder. J. Hazard. Mater. 2011, 186, 423–429.
  • Khoramzadeh, E.; Nasernejad, B.; Halladj, R. Mercury Biosorption from Aqueous Solutions by Sugarcane Bagasse. J. Taiwan Inst. Chem. E. 2013, 44, 266–269.
  • Santana, A.-J.; dos Santos, W.-N.-L.; Silva, L.-O.-B.; das Virgens C.-F. Removal of Mercury(II) Ions in Aqueous Solution using the Peel Biomass of Pachira Aquatica Aubl: Kinetics and Adsorption Equilibrium Studies. Environ. Monit. Assess. 2016, 188, 293–304.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.