308
Views
10
CrossRef citations to date
0
Altmetric
Articles

Selective recognition of Fe3+ and Cr3+ in aqueous medium via fluorescence quenching of graphene quantum dots

, , , &
Pages 250-255 | Received 09 Feb 2018, Accepted 14 Apr 2018, Published online: 08 Oct 2018

References

  • Isaac, R. A; Kerber, J. D. Atomic Absorption and Flame Photometry: Techniques and Uses in Soil, Plant and Water Analysis. In Instrumental Methods for Analysis of Soil and Plant Tissues; Walsh, L. M., Ed.; Soil Science Society of America: Madison, WI, 1971; pp 17–37.
  • U.S. Environmental Protection Agency, 1994, Method 200.7, Revision 4.4: Determination of Metals and Trace Elements in Water and Wastes by Inductively Coupled Plasma-Atomic Emission Spectrometry, https://www.epa.gov/sites/production/files/2015-08/documents/method_200-7_rev_4-4_1994.p
  • Teherani, D. K.; Application of Neutron Activation Analysis for Determination of Mercury, Iron, Europium, Lanthanum and Potassium in Asbestos. J. Radioanal. Nucl. Chem. 1986, 10, 231–240.
  • Abe, W.; Isaka, S.; Koike, Y.; Nakano, K.; Fujita, K.; Nakamura, T. X-Ray Fluorescence Analysis of Trace Metals in Environmental Water Using Preconcentration with an Iminodiacetate Extraction Disk. X-Ray Spectrom. 2006, 35, 184–189. DOI:10.1002/xrs.892
  • Desvergne, J. P.; Czarnik, A. W. Fluorescent Chemosensors for Ion and Molecule Recognition; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997.
  • Patidar, R.; Rebary, B.; Paul, P. Colorimetric and Fluorogenic Recognition of Hg2+ and Cr3+ in Acetonitrile and Their Test Paper Recognition in Aqueous Media with the Aid of rhodamine based sensors. J. Fluoresc. 2015, 25, 387–395. DOI:10.1007/s10895-015-1524-2
  • Sahoo, S. K.; Sharma, D.; Bera, R. K.; Crisponi, G.; Callan, J. F. Iron(III) selective molecular and supramolecular fluorescent probes. Chem. Soc. Rev. 2012, 41, 7195–7227. DOI:10.1039/c2cs35152h
  • Kim, H. N.; Ren, W. X.; Kim, J. S.; Yoon, J. Fluorescent and Colorimetric Sensors for Detection of Lead, Cadmium, and Mercury Ions. Chem. Soc. Rev. 2012, 41, 3210–3244. DOI:10.1039/C1CS15245A
  • Mattoussi, H.; Mauro, J. M.; Goldman, E. R.; Anderson, G. P.; Sundar, V. C.; Mikulec, F. V.; Bawendi, M. G. Self-Assembly of CdSe − ZnS Quantum Dot Bioconjugates Using an Engineered Recombinant Protein. J. Am. Chem. Soc. 2000, 122, 12142–12150. DOI:10.1021/ja002535y
  • Resch-Genger, U.; Grabolle, M.; Cavaliere-Jaricot, S.; Nitschke, R.; Nann, T. Quantum Dots versus Organic Dyes as Fluorescent Labels. Nat. Methods. 2008, 5, 763–775. DOI:10.1038/nmeth.1248
  • Sareen, D.; Kaur, P.; Singh, K. Strategies in Detection of Metal Ions Using Dyes. Coord. Chem. Rev. 2014, 265, 125–154. DOI:10.1016/j.ccr.2014.01.015
  • Li, J.; Zhu, J. J. Quantum Dots for Fluorescent Biosensing and Bio-Imaging Applications. Analyst 2013, 138, 2506–2515. DOI:10.1039/c3an36705c
  • Chen, N.; He, Y.; Su, Y.; Li, X.; Huang, Q.; Wang, H.; Zhang, X.; Tai, R.; Fan, C. The Cytotoxicity of Cadmium-Based Quantum Dots. Biomaterials 2012, 33, 1238–1244. DOI:10.1016/j.biomaterials.2011.10.070
  • Geys, J.; Nemmar, A.; Verbeken, E.; Smolders, E.; Ratoi, M.; Hoylaerts, M. F.; Nemery, B.; Hoet, P. H. M. Acute Toxicity and Prothrombotic Effects of Quantum Dots: Impact of Surface Charge. Environ. Health Perspect. 2008, 116, 1607–1613. DOI:10.1289/ehp.11566
  • Baker, S. N.; Baker, G. A. Luminescent Carbon Nanodots: Emergent Nanolights. Angew. Chem. Int. Ed. Engl. 2010, 49, 6726–6744. DOI:10.1002/anie.200906623
  • Lim, S. Y.; Shen, W.; Gao, Z. Carbon Quantum Dots and Their Applications. Chem. Soc. Rev. 2015, 44, 362–381. DOI:10.1039/C4CS00269E
  • Wang, Q.; Huang, X.; Long, Y.; Wang, X.; Zhang, H.; Zhu, R.; Liang, L.; Teng, P.; Zheng, H. Hollow Luminescent Carbon Dots for Drug Delivery. Carbon 2013, 59, 192–199. DOI:10.1016/j.carbon.2013.03.009
  • Patidar, R.; Rebary, B.; Bhadu, G. R.; Paul, P. Fluorescent Carbon Nanoparticles as Label-Free Recognizer of Hg2+ and Fe3+ through Effective Fluorescence Quenching in Aqueous Media. J. Lumin. 2016, 173, 243–249. DOI:10.1016/j.jlumin.2015.12.051
  • Sun, H.; Wu, L.; Wei, W.; Qu, X. Recent Advances in Graphene Quantum Dots for Sensing. Mater. Today 2013, 16, 433–442. DOI:10.1016/j.mattod.2013.10.020
  • Zhou, S.; Xu, H.; Gan, W.; Yuan, Q. Graphene Quantum Dots: recent Progress in Preparation and Fluorescence Sensing Applications. RSC Adv. 2016, 6, 110775–110788. DOI:10.1039/C6RA24349E
  • Ran, X.; Sun, H.; Pu, F.; Ren, J.; Qu, X. Ag Nanoparticle-Decorated Graphene Quantum Dots for Label-Free, Rapid and Sensitive Detection of Ag+ and Biothiols. Chem. Commun. (Camb.) 2013, 49, 1079–1108. DOI:10.1039/c2cc38403e
  • Sun, H.; Gao, N.; Wu, L.; Ren, J.; Wei, W.; Qu, X. Highly Photoluminescent Amino-Functionalized Graphene Quantum Dots Used for Sensing Copper Ions. Chem. Eur. J. 2013, 19, 13362–13368. DOI:10.1002/chem.201302268
  • Carrascoa, P. M.; Garcíaa, I.; Yateb, L.; Zaeraa, R. T.; Cabañeroa, G.; Grandea, H. J.; Ruiza, V. Graphene Quantum Dot Membranes as Fluorescent Sensing Platforms for Cr (VI) Detection. Carbon 2016, 109, 658–665. DOI:10.1016/j.carbon.2016.08.038
  • Ananthanarayanan, A.; Wang, X.; Routh, P.; Sana, B.; Lim, S.; Kim, D. H.; Lim K. H.; Li J.; Chen, P. Facile Synthesis of Graphene Quantum Dots from 3D Graphene and Their Application for Fe 3+ Sensing. Adv. Funct. Mater. 2014, 24, 3021–3026. DOI:10.1002/adfm.201303441
  • Chakraborti, H.; Sinha, S.; Ghosh, S.; Pal, S.; K. Interfacing Water Soluble Nanomaterials with Fluorescence Chemosensing: Graphene Quantum Dot to Detect Hg2+ in 100% Aqueous Solution. Mater. Lett. 2013, 97, 78–80. DOI:10.1016/j.matlet.2013.01.094
  • Tang, D.; Liu, J.; Yan, X.; Kang, L. Graphene Oxide Derived Graphene Quantum Dots with Different Photoluminescence Properties and Peroxidase-like Catalytic Activity. RSC Adv. 2016, 6, 50609–50617. DOI:10.1039/C5RA26279H
  • Naik, J. P.; Sutradhar, P.; Saha, M. Molecular Scale Rapid Synthesis of Graphene Quantum Dots (GQDs). J. Nanostruct. Chem. 2017, 7, 85–89. DOI:10.1007/s40097-017-0222-9
  • Lin, L.; Zhang, S. Creating High Yield Water Soluble Luminescent Graphene Quantum Dots via Exfoliating and Disintegrating Carbon Nanotubes and Graphite Flakes. Chem. Commun. 2012, 48, 10177–10179. DOI:10.1039/c2cc35559k

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.