134
Views
4
CrossRef citations to date
0
Altmetric
Articles

Synthesis, structure and mechanical properties of nanocomposites based on exfoliated nano magnesium silicate crystal and poly(acrylamide)

, , & ORCID Icon
Pages 276-286 | Received 01 Feb 2018, Accepted 14 Apr 2018, Published online: 11 Sep 2018

References

  • Rogovina, L.-Z.; Vasil’ev, V.-G.; Braudo, E.-E. Definition of the Concept of Polymer Gel. Polym. Sci. Ser. C 2008, 50, 85–92. doi:10.1134/S1811238208010050
  • Boztepe, C.; Solener, M.; Yuceer, M.; Kunkul, A.; Kabasakal, O.-S. Modeling of Swelling Behaviors of Acrylamide-Based Polymeric Hydrogels by Intelligent System. J. Dispers. Sci. Technol. 2015, 36, 1647–1656. doi:10.1080/01932691.2014.996892
  • Yi, Q.; Li, C.; Manlai, Z.; Yuli, L.; Ruiquan, L. Dynamic Thickening Investigation of the Gelation Process of PAM/PEI System at High Temperature and High Pressure. J. Dispers. Sci. Technol. 2017, 38, 1640–1646. doi:10.1080/01932691.2016.1269652
  • Haraguchi, K.; Li, H.-J.; Xu, Y.; Li, G. Copolymer Nanocomposite Hydrogels: Unique Tensile Mechanical Properties and Network Structures. Polymer 2016, 96, 94–103. doi:10.1016/j.polymer.2016.04.039
  • Zheng, C.; Huang, Z. PH-Responsive and Self-Healing Hydrogels Fabricated with Guar Gum and Reactive Microgels. J. Dispers. Sci. Technol. 2016, 37, 1123–1131. doi:10.1080/01932691.2015.1083441
  • Lo, C.-W.; Zhu, D.; Jiang, H. An Infrared-Light Responsive Graphene-Oxide Incorporated Poly (N-Isopropylacrylamide) Hydrogel Nanocomposite. Soft Matter 2011, 7, 5604–5609. doi:10.1039/c1sm00011j
  • Sershen, S.-R.; Mensing, G.-A.; Ng, M.; Halas, N.-J.; Beebe, D.-J.; West, J.-L. Independent Optical Control of Microfluidic Valves Formed from Optomechanically Responsive Nanocomposite Hydrogels. Adv. Mater. 2005, 17, 1366–1368. doi:10.1002/adma.200401239
  • Lanza, R.; Langer, R.; Vacanti, J. P. Principles of Tissue Engineering; Academic Press: Cambridge, 2011.
  • Bai, B.; Zhou, J.; Yin, M. A Comprehensive Review of Polyacrylamide Polymer Gels for Conformance Control. Petrol. Explor. Dev. 2015, 42, 525–532. doi:10.1016/S1876-3804(15)30045-8
  • Dong, L.; Yue, X.-A.; Su, Q.; Qin, W.; Song, W.; Zhang, D.; Zhang, Y. Study on the Plugging Ability of Polymer Gel Particle for the Profile Control in Reservoir. J. Dispers. Sci. Technol. 2016, 37, 34–40. doi:10.1080/01932691.2015.1022656
  • Wei, Y.-S.; Chen, K.-S.; Wu, L.-T. In Situ Synthesis of High Swell Ratio Polyacrylic Acid/Silver Nanocomposite Hydrogels and Their Antimicrobial Properties. J. Inorg. Biochem. 2016, 164, 17–25. doi:10.1016/j.jinorgbio.2016.08.007
  • Kadam, Y.; Pochat-Bohatier, C.; Sanchez, J.; El Ghzaoui, A. Modulating Viscoelastic Properties of Physically Crosslinked Self-Assembled Gelatin Hydrogels through Optimized Solvent Conditions. J. Dispers. Sci. Technol. 2015, 36, 1349–1356. doi:10.1080/01932691.2014.984721
  • Fink, J. K. High Performance Polymers; William Andrew: Norwich, 2014.
  • Chen, H.-X.; Tang, H.-M.; Wu, X.-Y.; Liu, Y.-G.; Bai, J.-H.; Zhao, F. Synthesis, Characterization, and Property Evaluation of a Hydrophobically Modified Polyacrylamide as Enhanced Oil Recovery Chemical. J. Dispers. Sci. Technol. 2016, 37, 486–495. doi:10.1080/01932691.2015.1045600
  • Xin, H.; Ao, D.; Wang, X.; Zhu, Y.; Zhang, J.; Tan, Y. Synthesis, Characterization, and Properties of Copolymers of Acrylamide with Sodium 2-Acrylamido-2-Methylpropane Sulfonate with Nano Silica Structure. Colloid Polym. Sci. 2015, 293, 1307–1316. doi:10.1007/s00396-015-3512-0
  • Xu, B.; Zhang, J.; Hu, X. The Delayed Crosslinking Amphiphilic Polymer Gel System Based on Multiple Emulsion for In-Depth Profile Control. J. Dispers. Sci. Technol. 2017, 38, 1242–1246. doi:10.1080/01932691.2016.1230502
  • Li, X.; Zhao, W. Synthesis and Properties of a Novel Diverting Agent Derived from the Copolymerization of Acrylamide with Sodium Acrylate. J. Dispers. Sci. Technol. 2010, 31, 1509–1515. doi:10.1080/01932690903294006
  • Haraguchi, K. Stimuli-Responsive Nanocomposite Gels. Colloid Polym. Sci. 2011, 289, 455–473. doi:10.1007/s00396-010-2373-9
  • Haraguchi, K.; Uyama, K.; Tanimoto, H. Self-healing in nanocomposite hydrogels. Macromol. Rapid Commun. 2011, 32, 1253–1258. doi:10.1002/marc.201100248
  • Zhang, P.; Li, G. Advances in Healing-on-Demand Polymers and Polymer Composites. Prog. Polym. Sci. 2016, 57, 32–63. doi:10.1016/j.progpolymsci.2015.11.005
  • Feldman, D. Polyamide Nanocomposites. J. Macromol. Sci. Part A 2017, 54, 255–262. doi:10.1080/10601325.2017.1282700
  • Johnson, J.-A.; Turro, N.-J.; Koberstein, J.-T.; Mark, J.-E. Some Hydrogels Having Novel Molecular Structures. Prog. Polym. Sci. 2010, 35, 332–337. doi:10.1016/j.progpolymsci.2009.12.002
  • Uzumcu, A.-T.; Guney, O.; Okay, O. Nanocomposite DNA Hydrogels with Temperature Sensitivity. Polymer 2016, 100, 169–178. doi:10.1016/j.polymer.2016.08.041
  • Schmidt, G.; Malwitz, M.-M. Properties of Polymer–Nanoparticle Composites. Curr. Opin. Colloid. Interface. Sci. 2003, 8, 103–108. doi:10.1016/S1359-0294(03)00008-6
  • Gibson, H.-W.; Bheda, M.-C.; Engen, P.-T. Rotaxanes, Catenanes, Polyrotaxanes, Polycatenanes and Related Materials. Prog. Polym. Sci. 1994, 19, 843–945. doi:10.1016/0079-6700(94)90034-5
  • Mao, Y.; Lin, S.; Zhao, X.; Anand, L. A Large Deformation Viscoelastic Model for Double-Network Hydrogels. J. Mech. Phys. Solids 2017, 100, 103–130. doi:10.1016/j.jmps.2016.12.011
  • Salimi, F.; Sefti, M.-V.; Jarrahian, K.; Rafipoor, M.; Ghorashi, S.-S. Preparation and Investigation of the Physical and Chemical Properties of Clay-Based Polyacrylamide/Cr (III) Hydrogels as a Water Shut-off Agent in Oil Reservoirs. Korean J. Chem. Eng. 2014, 31, 986–993. doi:10.1007/s11814-014-0023-5
  • Brevnov, P. N.; Kirsankina, G. R.; Zabolotnov, A. S.; Krasheninnikov, V. G.; Grinev, V. G.; Berezkina, N. G.; Sinevich, E. A.; Shcherbina, M. A.; Novokshonova, L. A. Synthesis and Properties of Nanocomposite Materials Based on Ultra-High-Molecular-Weight Polyethylene and Graphite Nanoplates. Polym. Sci. Ser. C 2016, 58, 38–49. doi:10.1134/S1811238216010021
  • Sun, F.; Lin, M.; Dong, Z.; Zhu, D.; Wang, S.-L.; Yang, J. Effect of Composition of HPAM/Chromium (III) Acetate Gels on Delayed Gelation Time. J. Dispers. Sci. Technol. 2016, 37, 753–759. doi:10.1080/01932691.2015.1041034
  • Tongwa, P.; Nygaard, R.; Bai, B. Evaluation of a Nanocomposite Hydrogel for Water Shut‐off in Enhanced Oil Recovery Applications: Design, Synthesis, and Characterization. J. Appl. Polym. Sci. 2013, 128, 787–794. doi:10.1002/app.38258
  • Zhou, Y.; Lei, L.; Yang, B.; Li, J.; Ren, J. Preparation of PLA-Based Nanocomposites Modified by Nano-Attapulgite with Good Toughness-Strength Balance. Polym. Test 2017, 60, 78–83. doi:10.1016/j.polymertesting.2017.03.007
  • Donescu, D.; Corobea, M.-C.; Capek, I.; Radovici, C.; Serban, S.; Petcu, C.; Ghiurea, M. Synthesis and Characterization of Polystyrene, Poly (Butyl Acrylate)-Layered Silicates Nanocomposites by Polymerization in Anionic Microemulsions. J. Dispers. Sci. Technol. 2009, 30, 166–173. doi:10.1080/01932690802498088
  • Osada, Y. Polymer Gels as Artificial Soft Tissue. Polym. Sci. Ser. C 2017, 59, 3–10. doi:10.1134/S1811238217010106
  • Jain, R.; Mahto, V.; Sharma, V.-P. Evaluation of Polyacrylamide-Grafted-Polyethylene Glycol/Silica Nanocomposite as Potential Additive in Water Based Drilling Mud for Reactive Shale Formation. J. Nat. Gas. Sci. Eng. 2015, 26, 526–537. doi:10.1016/j.jngse.2015.06.051
  • D’Arienzo, M.; Redaelli, M.; Callone, E.; Conzatti, L.; Di Credico, B.; Dirè, S.; Giannini, L.; Polizzi, S.; Schizzi, I.; Scotti, R.; et al. Hybrid SiO 2@ POSS Nanofiller: A Promising Reinforcing System for Rubber Nanocomposites. Mater. Chem. Front. 2017, 1, 1441–1452. doi:10.1039/C7QM00045F
  • Hanifpour, A.; Bahri-Laleh, N.; Nekoomanesh-Haghighi, M.; Karimi, M. Synthesis and Characterization of Poly1-Hexene/Silica Nanocomposites. Polym. Test 2017, 61, 27–34. doi:10.1016/j.polymertesting.2017.05.002
  • Yu, B.; Kang, W.; Sarsenbekuly, B.; Yang, R.; Fan, H.; Yin, X. Thickening Behavior and Synergistic Mechanism of Mixed System of Two Hydrophobically Associating Polymers. J. Dispers. Sci. Technol. 2017, 38, 1196–1203. doi:10.1080/01932691.2016.1227265
  • Gaharwar, A.-K.; Rivera, C.; Wu, C.-J.; Chan, B.-K.; Schmidt, G. Photocrosslinked Nanocomposite Hydrogels from PEG and Silica Nanospheres: Structural, Mechanical and Cell Adhesion Characteristics. Mater. Sci. Eng. C 2013, 33, 1800–1807. doi:10.1016/j.msec.2012.12.099
  • Haraguchi, K. Nanocomposite Hydrogels. Curr. Opin. Solid. State. Mater. Sci. 2007, 11, 47–54. doi:10.1016/j.cossms.2008.05.001
  • Zhao, W.; Li, X.; Gao, S.; Feng, Y.; Huang, J. Understanding Mechanical Characteristics of Cellulose Nanocrystals Reinforced PHEMA Nanocomposite Hydrogel: In Aqueous Cyclic Test. Cellulose 2017, 24, 2095–2110. doi:10.1007/s10570-017-1244-7
  • Maksimova, E.-D.; Faizuloev, E.-B.; Izumrudov, V.-A.; Litmanovich, E.-A.; Melik-Nubarov, N.-S. Synthesis of Poly (N, N-Dimethylaminoethyl Methacrylate) Nanogels in Reverse Micelles for Delivery of Plasmid DNA and Small Interfering RNAs into Living Cells. Polym. Sci. Ser. C 2012, 54, 69–79. doi:10.1134/S1811238212040029
  • Cui, Z.; Wang, W.; Obeng, M.; Chen, M.; Wu, S.; Kinloch, I.; Saunders, B.-R. Using Intra-Microgel Crosslinking to Control the Mechanical Properties of Doubly Crosslinked Microgels. Soft Matter 2016, 12, 6985–6994. doi:10.1039/C6SM01337F
  • Almohsin, A. M.; Bai, B.; Imqam, A. H.; Wei, M.; Kang, W.; Delshad, M.; Sepehrnoori, K. Transport of Nanogel through Porous Media and Its Resistance to Water Flow. Presented at the SPE Improved Oil Recovery Symposium. Society of Petroleum Engineers, USA, April 12, 2014, p. 16.
  • Bera, M.; Maji, P. K. Effect of Structural Disparity of Graphene-Based Materials on Thermo-Mechanical and Surface Properties of Thermoplastic Polyurethane Nanocomposites. Polymer 2017, 119, 118–133. doi:10.1016/j.polymer.2017.05.019
  • Mohammadi, S.; Sefti, M.-V.; Salehi, M.-B.; Moghadam, A.-M.; Rajaee, S.; Naderi, H. Hydrogel Swelling Properties: Comparison between Conventional and Nanocomposite Hydrogels for Water Shutoff Treatment. Asia-Pac. J. Chem. Eng. 2015, 10, 743–753. doi:10.1002/apj.1912
  • Tackett, J. E. FT-IR Characterization of Metal Acetates in Aqueous Solution. Appl. Spectrosc. 1989, 43, 483–489. doi:10.1366/0003702894202931
  • Magalhães, A.-S.-G.; Almeida Neto, M.-P.; Bezerra, M.-N.; Ricardo, N.-M.; Feitosa, J. Application of FTIR in the Determination of Acrylate Content in Poly (Sodium Acrylate-Co-Acrylamide) Superabsorbent Hydrogels. Quím. Nova 2012, 35, 1464–1467. doi:10.1590/S0100-40422012000700030
  • Muhamad, I.-I.; Asgharzadehahmadi, S.-A.; Zaidel, D.-N.-A.; Supriyanto, E. Characterization and Evaluation of Antibacterial Properties of Polyacrylamide Based Hydrogel Containing Magnesium Oxide Nanoparticles. Int. J. Biol. Biomed. Eng. 2013, 7, 108–113.
  • Yu, Q.; Lu, X.-G.; Liu, J.-X.; Xie, K. Rheological Properties of Poly (Ethylene Glycol)/Poly (Acrylamide-Co-Cellulose) Semi-Interpenetrating Networks Gel. J. Dispers. Sci. Technol. 2015, 36, 838–844. doi:10.1080/01932691.2014.926820
  • Alexandre, M.; Dubois, P. Polymer-Layered Silicate Nanocomposites: preparation, Properties and Uses of a New Class of Materials. Mater. Sci. Eng. R 2000, 28, 1–63. doi:10.1016/S0927-796X(00)00012-7
  • Kuzmanoski, A.; Pankratov, V.; Feldmann, C. Microwave-Assisted Ionic-Liquid-Based Synthesis of Highly Crystalline CaMoO4: RE3+ (RE = Tb, Sm, Eu) and Y2Mo4O15: Eu3+ Nanoparticles. Solid State Sci. 2015, 41, 56–62. doi:10.1016/j.solidstatesciences.2015.02.005
  • Brydson, R.; Brown, A.; Hodges, C.; Abellan, P.; Hondow, N. Microscopy of Nanoparticulate Dispersions. J. Microsc. 2015, 260, 238–247. doi:10.1111/jmi.12290

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.