112
Views
0
CrossRef citations to date
0
Altmetric
Articles

Phase evolution, structural characteristics and mechanism of vesicle formation from a synthetic amphiphile: Controlled morphology by tuning solution phase parameters

ORCID Icon & ORCID Icon
Pages 287-298 | Received 27 Feb 2018, Accepted 14 Apr 2018, Published online: 05 Sep 2018

References

  • Boles, M. A.; Engel, M.; Talapin, D. V. Self-Assembly of Colloidal Nanocrystals: From Intricate Structures to Functional Materials. Chem. Rev. 2016, 116, 11220–11289. DOI:10.1021/acs.chemrev.6b00196.
  • Fendler, J. H. Atomic and Molecular Clusters in Membrane Mimetic Chemistry. Chem. Rev. 1987, 87, 877–899. DOI:10.1021/cr00081a002.
  • Morrison, I. D.; Ross, S. Colloidal Dispersions: Suspensions, Emulsions and Foams; Wiley Interscience: New York, 2002.
  • Kim, H.-.C.; Park, S.-.M.; Hinsberg, W. D. Block Copolymer Based Nanostructures: Materials, Processes, and Applications to Electronics. Chem. Rev. 2010, 110, 146–177. DOI:10.1021/cr900159v.
  • Ikkala, O.; ten Brinke, G. Functional Materials Based on Self-Assembly of Polymeric Supramolecules. Science 2002, 295, 2407–2409. DOI:10.1126/science.1067794.
  • Alexandridis, P.; Lindman, B.; Edrs., Amphiphilic Block Copolymers: Self Assembly and Application, Elsevier Science: The Netherlands, 2000.
  • Kita-Tokarczyk, K.; Grumelard, J.; Haefle, T.; Meier, W. Block Copolymer Vesicles-Using Concepts from Polymer Chemistry to Mimic Biomembranes. Polymer 2005, 46, 3540–3563. DOI:10.1016/j.polymer.2005.02.083.
  • Barnhill, S. A.; Bell, N. C.; Patterson, J. P.; Olds, D. P.; Gianneschi, N. C. Phase Diagrams of Polynorbornene Amphiphilic Block Copolymers in Solution. Macromolecules 2015, 48, 1152–1161. DOI:10.1021/ma502163j.
  • Kunitake, T. Synthetic Bilayer Membranes: Molecular Design, Self-organization, and Application, Angew. Chem. Int. Ed. Engl. 1992, 31, 709–726. DOI:10.1002/anie.199207091.
  • Bangham, A. D.; Horne, R. W. Negative Staining of Phospholipids and their Structural Modification by Surface-active agents as observed in the Electron Microscope. J. Mol. Biol. 1964, 8, 660–668. DOI:10.1016/S0022-2836(64)80115-7.
  • Israelachvili, J. N.; Mitchell, D. J. A model for the packing of lipids in bilayer membranes. Biochim. Biophys. Acta 1975, 389, 13–19. DOI:10.1016/0005-2736(75)90381-8.
  • Hyde S. T. Bicontinuous Structure in Lyotropic Liquid Crystals and Crystalline Hyperbolic Surfaces. Curr. Opin. Solid State Mater. Sci. 1996, 1, 653–662. DOI:10.1016/S1359-0286(96)80047-7.
  • Helfrich, W. Elastic Properties of Lipid Bilayers: Theory and Possible Experiments. Z. Naturforsch., C.; Biosci. 1973, 28, 693–703.
  • Zhao, X. K.; Baral, S.; Rolandi, R.; Fendler, J. H. Semiconductor Particles in Bilayer Lipid Membranes. Formation, Characterization, and Photoelectrochemistry. J. Am. Chem. Soc. 1988, 110, 1012–1024. DOI:10.1021/ja00212a005.
  • Bouwstra, J. A.; van Hal, D. A.; Hofland, H. E. J.; Junginger, H. E. Preparation and Characterization of Non-Ionic Surfactant Vesicles. Colloids Surf. A 1997, 123-124, 71–80. DOI:10.1016/S0927-7757(96)03800-9.
  • Carafa, M.; Santucci, E.; Alhaique, F.; Coviello, T.; Murtas, E.; Riccieri, F. M.; Lucania, G.; Torrisi, M. R. Preparation and Properties of New Unilamellar Non-Ionic/Ionic Surfactant Vesicles. Int. J. Pharm. 1998, 160, 51–59. DOI:10.1016/S0378-5173(97)00294-9.
  • Moghassemi. S.; Hadjizadeh, A. Nano-Niosomes as Nanoscale Drug Delivery Systems: an Illustrated Review. J. Controlled Release 2014, 185, 22–36. DOI:10.1016/j.jconrel.2014.04.015.
  • Marianecci. C.; Di Marizo, L., Rinaldi, F., Celia, C., Paolino, D., Alhaique, F., Eposito, S., Carafa, M. Niosomes from 80s to Present: The State of the Art. Adv. Coll. Interf. Sci. 2014, 205, 187–206. DOI:10.1016/j.cis.2013.11.018.
  • Mukherjee, B.; Chakraborty, S.; Mondal, L.; Satapathy, B. S.; Sengupta, S.; Dutta, L.; Choudhury, A.; Mandal, D.; Multifunctional drug nanocarriers facilitate more specific entry of therapeutic payload into tumors and control multiple drug resistance in cancer. In Nanobiomaterials in Cancer Therapy; Grumezescu A., Ed.; 2016, pp 203–251. DOI:10.1016/B978-0-323-42863-7.00007-4.
  • Kumar, G. P; Rajeshwarrao, P Nonionic Surfactant Vesicular Systems for Effective Drug Delivery—an Overview. Act. Pharm. Sinica B 2011, 14, 208–219. DOI:10.1016/j.apsb.2011.09.002.
  • Pashley, R. M.; Karaman, M. E.; Applied Colloid and Surface Chemistry, John Wiley and Sons Ltd: England 2004.
  • Ruckmani, K.; Jayakar, B.; Ghoshal, S. K. Nonionic Surfactant Vesicles (Niosomes) of Cytarabine Hydrochloride for Effective Treatment of Leukemias: Encapsulation, Storage, and In Vitro Release. Drug Develop. Ind. Pharm. 2000, 26, 217–222. DOI:10.1081/DDC-100100348.
  • Pardakhty, A.; Varshosaz, J.; Rouholamini, A.; In Vitro Study of Polyoxyethylene Alkyl Ether Niosomes for Delivery of Insulin. Int. J. Pharm. 2007, 328, 130–141. DOI:10.1016/j.ijpharm.2006.08.002.
  • Varshosaz, J.; Pardakhty, A.; Hajhashemi, V. I.; Najafabadi A. R. Development and Physical Characterization of Sorbitan Monoester Niosomes for Insulin Oral Delivery. Drug Deliv. 2003, 10, 251–262. DOI:10.1080/drd_10_4_251.
  • Mahale, N. B.; Thakkar, P. D.; Mali, R. G.; Walunj, D. R.; Chaudhari, S. R. Niosomes: Novel Sustained Release Nonionic Stable Vesicular Systems — An Overview. Adv. Coll. Interf. Sci. 2012, 183-184, 46–54. DOI:10.1016/j.cis.2012.08.002.
  • Uchegbu, I. F., Vyas, S. P., Non-ionic Surfactant Based Vesicles (Niosomes) in Drug Delivery. Intl. J. Pharmaceutics 1998, 172, 33–70. DOI:10.1016/S0378-5173(98)00169-0.
  • Sala, M.; Diab, R.; Elaissari, A.; Fessi, H. Lipid Nanocarriers as Skin Drug Delivery Systems: Properties, Mechanisms of Skin Interactions and Medical Applications. Intl. J. Pharm. 2018, 535, 1–17. DOI:10.1016/j.ijpharm.2017.10.046.
  • Salager, J. L.; Surfactants Types and Uses, Mérida-Venezuela Versión, FIRP Booklet No. 300-A, 2002.
  • Negm, N. A.; Ahmed, S. A.; Abd-Elaal, A. A.; Ashraf, T. Synthesis and Surface Activity of Nonionic Surfactants Derived from Gallic Acid. Arab. J. Sci. Engg. 2014, 41, 1–7. DOI:10.1007/s13369-014-1488-6.
  • Sankaranarayanan, S. G.; Patnaik, A. A New Fullerene C60–Didodecyloxy Benzene Dyad: An Evidence for Ground State Electron Transfer. Chem. Phys. Lett. 2005, 414, 198–203. DOI:10.1016/j.cplett.2005.08.043.
  • HyperChem(TM) Professional 7.5, Hypercube, Inc., 1115 NW 4th Street, Gainesville, Florida 32601, USA.
  • Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; et.al., Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013.
  • Nagarajan, R.; Ruckenstein, E. Aggregation of Amphiphiles as Micelles or Vesicles in Aqueous Media. J. Coll. Interf. Sci. 1979, 71, 580–604. DOI:10.1016/0021-9797(79)90331-X.
  • Fuhrhop, J-H; Mathieu, J Routes to Functional Vesicle Membranes without Proteins. Angew. Chem. Intl. Ed. Engl. 1984, 23, 100–113. DOI:10.1002/anie.198401001.
  • Fendler, J. H. Microemulsions, Micelles, and Vesicles as Media for Membrane Mimetic Photochemistry. Acc. Chem. Res. 1980, 84, 1485–1491. DOI:10.1021/j100449a012.
  • Cevc, G Rational Design of New Product Candidates: The Next Generation of Highly Deformable Bilayer Vesicles for Non-Invasive, Targeted Therapy. Jl. Control. Rel. 2012, 160, 135–146. DOI:10.1016/j.jconrel.2012.01.005.
  • Naqvi, A. Z; Kabir-ud-Din, Clouding Phenomenon in Amphiphilic Systems: A Review of Five Decades. Coll. Surf., B 2018, 165, 325–344. DOI:10.1016/j.colsurfb.2018.01.060.
  • Ramesh, N.; Sarangi, N. K.; Patnaik, A. Establishing the Ellipsoidal Geometry of a Benzoic Acid-Based Amphiphile via Dimer Switching: Insights from Intramolecular Rotation and Facial H-Bond Torsion. J. Phys. Chem. B 2013, 117, 5345–5354. DOI:10.1021/jp400854x.
  • Franck, J.; Teller, E. Migration and Photochemical Action of Excitation Energy in Crystals. J. Chem. Phys. 1938, 6, 861–872. DOI:10.1063/1.1750182.
  • Buchwald, M.; Jencks, W. P. Optical Properties of Astaxanthin Solutions and Aggregates. Biochem 1968, 7, 834–843. DOI:10.1021/bi00842a042.
  • Sankaranarayanan, S. G.; Agarwal, A. K.; Suresh, K. A.: Patnaik, A. Structure and Dynamics in Solvent-Polarity-Induced Aggregates from a C60 Fullerene-based Dyad Langmuir 2005, 21, 12139–12145. DOI:10.1021/la052313j.
  • Griffin W. C. Calculation of HLB Values of Non-ionic Surfactants. J. Soc. Cosmetic Chem. 1954, 5, 249–256.
  • Gauss View: Version 5.0.9, Dennington R. (II). Shawnee Mission, KS: Keith T. & Millam J., Semichem, Inc.
  • Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W.; J. Chem. Soc. Faraday Trans. 2 1976, 72, 1525–1568. DOI:10.1039/F29767201525.
  • Šegota, S.; Težak, Đ. Theory of Self-Assembly of Hydrocarbon Amphiphiles into Micelles and Bilayers. Adv. Coll. Interf. Sci. 2006, 121, 51–75.
  • Hunter, C. A.; Sanders, J. K. M. The Nature of Pi - Pi Interactions. J. Am. Chem,. Soc. 1990, 112, 5225–5534. DOI:10.1021/ja00170a016.
  • Manosroi, A.; Wongtrakul, P.; Manosroi, J.; Sakai, H.; Sugawara, F.; Yuasa, M.; Abe, M. Characterization of Vesicles Prepared with Various Non-Ionic Surfactants Mixed with Cholesterol. Coll. Interf. B. 2003, 30, 129–138. DOI:10.1016/S0927-7765(03)00080-8.
  • Yoshioka, T.; Sternberg, B.; Florence, A. T. Preparation and Properties of Vesicles (Niosomes) of Sorbitan Monoesters (Span 20, 40, 60 and 80) and a Sorbitan Triester (Span 85). Intl. J. Pharm. 1994, 25, 1–6. DOI:10.1016/0378-5173(94)90228-3.
  • Antonietti, M.; Förster, S. Vesicles and Liposomes: A Self‐Assembly Principle beyond Lipids. Adv. Mater. 2003, 15, 1323–1333. DOI:10.1002/adma.200300010.
  • Denkov., N. D.; Yoshimura, H.; Kouyama, T.; Walz, J.; Nagayama, K. Electron Cryomicroscopy of Bacteriorhodopsin Vesicles: Mechanism of Vesicle Formation; Biophys. J. 1998, 74, 1409–1420. DOI:10.1016/S0006-3495(98)77853-1.
  • Sankaranarayanan, S. G.; Patnaik, A. Aggregation of a C60−Didodecyloxybenzene Dyad: Structure, Dynamics, and Mechanism of Vesicle Growth, Langmuir 2007, 23, 4800–4808. DOI:10.1021/la0626961.
  • Dimova, R.; Seifert, U.; Pouligny, B.; Förster, S.; Döbereiner, H.-G. Hyperviscous Diblock Copolymer Vesicles. Eur. Phys. J. E. 2002, 7, 241–250. DOI:10.1140/epje/i200101032.
  • Battaglia, G.; Tomas, S.; Ryan, A. J. Lamellarsomes: Metastable Polymeric Multilamellar Aggregates. Soft Mater 2007, 3, 470–475. DOI:10.1039/b605493e.
  • Soo, P. M.; Eisenberg, A. Preparation of Block Copolymer Vesicles in Solution. J. Polym Sci., B. 2004, 42, 923–938. DOI:10.1002/polb.10739.
  • Luo, L.; Eisenberg, A. Thermodynamic Size Control of Block Copolymer Vesicles in Solution. Langmuir 2001, 17, 6804–6811. DOI:10.1021/la0104370.
  • Choucair, A. A.; Kycia, A. H.; Eisenberg, A. Kinetics of Fusion of Polystyrene-b-poly(Acrylic Acid) Vesicles in Solution Langmuir 2003, 19, 1001–1008. DOI:10.1021/la026187k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.