327
Views
12
CrossRef citations to date
0
Altmetric
Articles

CFD-PBM approach for the gas-liquid flow in a nanobubble generator with honeycomb structure

, , , , , , & show all
Pages 306-317 | Received 26 Dec 2017, Accepted 13 Apr 2018, Published online: 18 Dec 2018

References

  • Fukushi, K.; Matsui, Y.; Tambo, N. Dissolved Air Flotation: Experiments and Kinetic Analysis. J. Water. SRT-Aqua. 1998, 47, 76–86.
  • Onari, H.; Saga, T.; Watanabe, K.; Maeda, K.; Matsuo, K. High Functional Characteristics of Micro-Bubbles and Water Purification. Resour. Process. 1999, 46, 238–244. DOI:10.4144/rpsj1986.46.238
  • Kakuta, I. Effective Utilization of Micro- and Nano-Bubble Technology on Environmental Improvement, Promotion of Health and Growth Rate of Organisms, Food Safety, and Medical Therapy. Bull. Soc. Sea Water Sci. Jpn. 2006, 60, 160–163. (in Japanese).
  • Tusge, H. Fundamentals of Microbubbles and Nanobubbles. Bull. Soc. Sea Water Sci. Jpn. 2010, 64, 4–10. (in Japanese)
  • Takahashi, M. Fundamental Properties and Technical Applications of Microbubbles. Presented at 2nd International Symposium on Application of High-voltage, Plasmas & Micro/Nano Bubbles to Agriculture and Aquaculture, Chiang Mai, Thailand, July 26, 2017.
  • Michioku, K.; Kanda, T.; Ohnari, H.; Nishikawa, T.; Matsuo, K.; Kido, T. A Preliminary Experiment on Reservoir Water Purification by Using a Micro-Bubble Aeration System. Proc. Hydraul. Eng. 2000, 44, 1119–1124. (in Japanese) DOI:10.2208/prohe.44.1119
  • Hasegawa, H.; Masaki, Y.; Matsuuchi, K.; Yoshida, Y. Micro-Bubble Generation by Using Pipe with Slits. Trans. JSMET. 2006, 72, 2242–2248. DOI:10.1299/kikaib.72.2242
  • Hiraki, K. Efficient Long Term Storage Technology of Seafood Using Nitrogen Nanobubbles. Latest Technol. Microbubbles NTS Inc. 2014, 2, 177–183. (in Japanese).
  • Tusge, H. The latest technology on microbubbles and nanobubbles II; CMC Publishing Co.,Ltd: Frankfurt, 2010.
  • Sadatomi, M.; Kawahara, A.; Kano, K.; Ohtomo, A. Performance of a New Micro-Bubble Generator with a Spherical Body in a Flowing Water Tube. Exp. Therm. Fluid. Sci. 2005, 29, 615–623. DOI:10.1016/j.expthermflusci.2004.08.006
  • Kudo, Y.; Hiraki, K. Characteristics Comparison of the Honeycomb Mixing Device by considering the Mixing Energy in the Gas-Liquid Mixing. Proc. Symp. Micro-Nano Sci. Technol. 2011, 3, 26–27.
  • Noda, N.-A.; Ren, F.; Yamamoto, W.; Ueda, T.; Sano, Y.; Chen, D.-H.; Takase, Y.; Yonezawa, Y. Design and Performance of Honeycomb Structure for Nanobubbles Generating Apparatus. J. Jpn. Soc. Des. Eng. 2018, 53, 111–126.
  • Liang, X.-F.; Pan, H.; Su, Y.-H.; Luo, Z.-H. CFD-PBM Approach with Modified Drag Model for the Gas–Liquid Flow in a Bubble Column. Chem. Eng. Res. Des. 2016, 112, 88–102. DOI:10.1016/j.cherd.2016.06.014
  • Delnoij, E.; Lammers, F.; Kuipers, J.; Van Swaaij, W. Dynamic Simulation of Dispersed Gas–Liquid Two-Phase Flow Using a Discrete Bubble Model. Chem. Eng. Sci. 1997, 52, 1429–1458. DOI:10.1016/S0009-2509(96)00515-5
  • Sokolichin, A.; Eigenberger, G.; Lapin, A.; Lübert, A. Dynamic Numerical Simulation of Gas–Liquid Two-Phase Flows Euler/Euler versus Euler/Lagrange. Chem. Eng. Sci. 1997, 52, 611–626. DOI:10.1016/S0009-2509(96)00425-3
  • Drew, D. Mathematical Modeling of Two-Phase Flow. Annu. Rev. Fluid Mech. 1983, 15, 261–291. DOI:10.1146/annurev.fl.15.010183.001401
  • Krishna, R.; Urseanu, M.-I.; Van Baten, J.-M.; Ellenberger, J. Influence of Scale on the Hydrodynamics of Bubble Columns Operating in the Churn-Turbulent Regime: Experiments Vs. Eulerian Simulations. Chem. Eng. Sci. 1999, 54, 4903–4911. DOI:10.1016/S0009-2509(99)00211-0
  • Wang, T.-F.; Wang, J.-F.; Jin, Y. Population Balance Model for Gas − Liquid Flows: Influence of Bubble Coalescence and Breakup Models. Ind. Eng. Chem. Res. 2005, 44, 7540–7549. DOI:10.1021/ie0489002
  • Li, L.-M.; Liu, Z.-Q.; Li, B.-K.; Matsuura, H.; Tsukihashi, F. Water Model and CFD-PBM Coupled Model of Gas-Liquid-Slag Three-Phase Flow in Ladle Metallurgy. ISIJ. Int. 2015, 55, 1337–1346. DOI:10.2355/isijinternational.55.1337
  • Duan, X.-Y.; Cheung, S. C. P.; Yeoh, G.-H.; Tu, J.-Y.; Krepper, E.; Lucas, D. Gas–Liquid Flows in Medium and Large Vertical Pipes. Chem. Eng. Sci. 2011, 66, 872–883. DOI:10.1016/j.ces.2010.11.031
  • Wang, T.; Wang, J. Numerical Simulations of Gas–Liquid Mass Transfer in Bubble Columns with a CFD–PBM Coupled Model. Chem. Eng. Sci. 2007, 62, 7107–7118. DOI:10.1016/j.ces.2007.08.033
  • Wang, T.; Wang, J.; Jin, Y. A CFD-PBM Coupled Model for Gas–Liquid Flows. AIChE J. 2006, 52, 125–140. DOI:10.1002/aic.10611
  • Xing, C.; Wang, T.; Wang, J. Experimental Study and Numerical Simulation with a Coupled CFD–PBM Model of the Effect of Liquid Viscosity in a Bubble Column. Chem. Eng. Sci. 2013, 95, 313–322. DOI:10.1016/j.ces.2013.03.022
  • Sarhan, A.-R.; Naser, J.; Brooks, G. CFD Simulation on Influence of Suspended Solid Particles on Bubbles’ Coalescence Rate in Flotation Cell. Int. J. Miner. Process. 2016, 146, 54–64. DOI:10.1016/j.minpro.2015.11.014
  • Sarhan, A.-R.; Naser, J.; Brooks, G. CFD Analysis of Solid Particles Properties Effect in Three-Phase Flotation Column. Sep. Purif. Technol. 2017, 185, 1–9. DOI:10.1016/j.seppur.2017.04.042
  • Sarhan, A.-R.; Naser, J.; Brooks, G. Effects of Particle Size and Concentration on Bubble Coalescence and Froth Formation in a Slurry Bubble Column. Particuology 2018, 36, 82–95. DOI:10.1016/j.partic.2017.04.011
  • Sarhan, A.-R.; Naser, J.; Brooks, G. Bubbly Flow with Particle Attachment and Detachment – A Multi-Phase CFD Study. Sep. Sci. Technol. 2018, 53, 181–197. DOI:10.1080/01496395.2017.1375525
  • Schiller, L.; Naumann, A. A Drag Coefficient Correlation. Z. Ver. Dtsch. Ing. 1935, 77, 318–320.
  • Takamasa, T.; Tomiyama, A. Three-Dimensional Gas-Liquid Two-Phase Bubbly Flow in a C-Shaped Tube. Presented at the 9th International Topical Meeting on Nuclear Reactor Thermal Hydraulics, San Francisco, CA, Oct. 3, 1999.
  • Tomiyama, A.; Shimada, N. A Numerical Method for Bubbly Flow Simulation Based on a Multi-Fluid Model. J. Pressure Vessel Technol. 2001, 123, 510–516. DOI:10.1115/1.1388010
  • Tomiyama, A.; Tamai, H.; Zun, I.; Hosokawa, S. Transverse Migration of Single Bubbles in Simple Shear Flows. Chem. Eng. Sci. 2002, 57, 1849–1858. DOI:10.1016/S0009-2509(02)00085-4
  • Frank, T.; Zwart, P.-J.; Krepper, E.; Prasser, H.-M.; Lucas, D. Validation of CFD Models for Mono- and Polydisperse Air–Water Two-Phase Flows in Pipes. Nucl. Eng. Des. 2008, 238, 647–659. DOI:10.1016/j.nucengdes.2007.02.056
  • Laborde-Boutet, C.; Larachi, F.; Dromard, N.; Delsart, O.; Schweich, D. CFD Simulation of Bubble Column Flows: Investigations on Turbulence Models in RANS Approach. Chem. Eng. Sci. 2009, 64, 4399–4413. DOI:10.1016/j.ces.2009.07.009
  • Yakhot, V.; Orszag, S.-A.; Thangam, S.; Gatski, T.-B.; Speziale, C.-G. Development of Turbulence Models for Shear Flows by a Double Expansion Technique. Phys. Fluids. A 1992, 4, 1510–1520. DOI:10.1063/1.858424
  • Sato, Y.; Sekoguchi, K. Liquid Velocity Distribution in Two-Phase Bubble Flow. Int. J. Multiphase Flow 1975, 2, 79–95. DOI:10.1016/0301-9322(75)90030-0
  • ANSYS. ANSYS Fluent 16.2 Documentation. ANSYS Inc., 2015.
  • Luo, H.; Svendsen, H.-F. Theoretical Model for Drop and Bubble Breakup in Turbulent Dispersions. AIChE J. 1996, 42, 1225–1233. DOI:10.1002/aic.690420505
  • Saffman, P.-G.; Turner, J.-S. On the Collision of Droplets in Turbulent Clouds. J. Fluid Mech. 1956, 1, 16–30. DOI:10.1017/S0022112056000020
  • Abrahamson, J. Collision Rates of Small Particles in a Vigorously Turbulent Fluid. Chem. Eng. Sci. 1975, 30, 1371–1379. DOI:10.1016/0009-2509(75)85067-6
  • Higashitani, K.; Yamauchi, K.; Matsuno, Y.; Hosokawa, G. Turbulent Coagulation of Particles Dispersed in a Viscous Fluid. J. Chem. Eng. Japan. 1983, 16, 299–304. DOI:10.1252/jcej.16.299
  • Hagesaether, L.; Jakobsen, H.-A.; Svendsen, H.-F. A Model for Turbulent Binary Breakup of Dispersed Fluid Particles. Chem. Eng. Sci. 2002, 57, 3251–3267. DOI:10.1016/S0009-2509(02)00197-5
  • Malloy, A.; Carr, B. Nanoparticle Tracking Analysis. Part. Part. Syst. Charact. 2006, 23, 197–204. DOI:10.1002/ppsc.200601031
  • Filipe, V.; Hawe, A.; Jiskoot, W. Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates. Pharm. Res. 2010, 27, 796–810. DOI:10.1007/s11095-010-0073-2
  • Kolmogorov, A.-N. On the Breakage of Drops in a Turbulent Flow. Dokl. Akad. Nauk. SSSR 1949, 66, 825–828.
  • Evans, G.-M.; Jameson, G.-J.; Atkinson, B.-W. Prediction of the Bubble Size Generated by a Plunging Liquid Jet Bubble Column. Chem. Eng. Sci. 1992, 47, 3265–3272. DOI:10.1016/0009-2509(92)85034-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.