220
Views
4
CrossRef citations to date
0
Altmetric
Original Articles

The study of the stability of aqueous three-phase fire-resistant foam in typical liquidus hydrocarbons

, , , , , & show all
Pages 1075-1084 | Received 06 Mar 2018, Accepted 19 May 2018, Published online: 04 Jun 2019

References

  • Zhang, Q.; Wang, L.; Bi, Y.; Xu, D.; Zhi, H.; Qiu, P. Experimental investigation of foam spread and extinguishment of the large-scale methanol pool fire. J. Hazard. Mater. 2015, 287, 87–92. DOI:10.1016/j.jhazmat.2015.01.017.
  • Farhadi, H.; Riahi, S.; Ayatollahi, S.; Ahmadi, H. Experimental study of nanoparticle-surfactant-stabilized CO2 foam: Stability and mobility control. Chem. Eng. Res. Des. 2016, 111, 449–460. DOI:10.1016/j.cherd.2016.05.024.
  • Emrani, A.S.; Nasr-El-Din, H.A. An experimental study of nanoparticle-polymer-stabilized CO2 foam. Colloids Surf., A 2017, 524, 17–27. DOI:10.1016/j.colsurfa.2017.04.023.
  • Kuprin, D.S. Physical-chemical explanation of fire-fighting efficiency of FHF(fast-hardening foam) based on structured silica particles. J. Sol-Gel Sci. Technol. 2017, 81(1), 36–41. DOI:10.1007/s10971-016-4285-8.
  • Yekeen, N.; Idris, A.K.; Manan, M.A.; Samin, A.M.; Risal, A.R.; Kun, T.X. Bulk and bubble-scale experimental studies of influence of nanoparticles on foam stability. Chin. J. Chem. Eng. 2017, 25(3), 347–357. DOI:10.1016/j.cjche.016.08.012.
  • Qin, B.; Lu, Y.; Li, Y.; Wang, D. Aqueous three-phase foam supported by fly ash for coal spontaneous combustion prevention and control. Adv. Powder Technol. 2014, 25(5), 1527–1533. DOI:10.1016/j.apt.2014.04.010.
  • Gao, H.; Zhang, M.; Xia, J.; Song, B.; Wang, Y. Time and surfactant types dependent model of foams based on the Herschel-Bulkley model. Colloids Surf., A 2016, 509, 203–213. DOI:10.1016/j.colsurfa.2016.09.010.
  • Fameau, A.; Saint-Jalmes, A. Non-aqueous foams: Current understanding on the formation and stability mechanisms. Adv. Colloid Interface Sci. 2017, 247, 454–464. DOI:10.1016/j.cis.2017.02.007.
  • Arriaga, L.R.; Drenckhan, W.; Salonen, A.; Rodrigues, J.A.; Í Iguez-Palomares, R.; Rio, E.; Langevin, D. On the long-term stability of foams stabilised by mixtures of nano-particles and oppositely charged short chain surfactants. Soft Matter 2012, 8(43), 1185–1197. DOI:10.1039/c2sm26461g.
  • Grassia, P.; Ubal, S.; Giavedoni, M.D.; Vitasari, D.; Martin, P.J. Surfactant flow between a Plateau border and a film during foam fractionation. Chem. Eng. Sci. 2016, 143, 139–165. DOI:10.1016/j.ces.2015.12.011.
  • Yi Lu. Study on the Inorganic Solidified Foam and its Characteristics for Preventing and Controlling Spontaneous Combustion of Coal. PhD Thesis, China University of Mining and Technology, 2015.
  • Zhao, G.; Dai, C.; Wen, D.; Fang, J. Stability mechanism of a novel three-Phase foam by adding dispersed particle gel. Colloids Surf., A 2016, 497, 214–224. DOI:10.1016/j.colsurfa.2016.02.037.
  • Xi, Z.; Li, A. Characteristics of thermoplastic powder in an aqueous foam carrier for inhibiting spontaneous coal combustion. Process Saf. Environ. Prot. 2016, 104, 268–276. DOI:10.1016/j.psep.2016.09.012.
  • Shao, Z.; Wang, D.; Wang, Y.; Zhong, X.; Tang, X.; Hu, X. Controlling coal fires using the three-phase foam and water mist techniques in the Anjialing Open Pit Mine, China. Natural Hazards 2015, 75(2), 1833–1852. DOI:10.1007/s11069-014-1401-3.
  • Muganda, S.; Zanin, M.; Grano, S.R. Influence of particle size and contact angle on the flotation of chalcopyrite in a laboratory batch flotation cell. Int. J. Miner. Process. 2011, 98(3), 150–162. DOI:10.1016/j.minpro.2010.11.004.
  • Ip, S.W.; Wang, Y.; Toguri, J.M. Aluminum foam stabilization by solid particles. Can. Metall. Q. 1999, 38(1), 81–92. DOI:10.1016/S0008-4433(98)00024-X.
  • Binks, B.P.; Lumsdon, S.O. Influence of Particle Wettability on the Type and Stability of Surfactant-Free Emulsions†. Langmuir 2000, 16(23), 8622–8631. DOI:10.1021/la000189s.
  • Binks, B.P. Particles as surfactants-similarities and differences. Curr. Opin. Colloid Interface Sci. 2002, 7(1), 21–41. DOI:10.1016/S1359-0294(02)00008-0.
  • Binks, B.P.; Horozov, T.S. Aqueous Foams Stabilized Solely by Silica Nanoparticles. Angew. Chem., Int. Ed. 2005, 44(24), 3722–3725. DOI:10.1002/anie.200462470.
  • Binks, B.P.; Kirkland, M.; Rodrigues, J.A. Origin of stabilisation of aqueous foams in nanoparticle-surfactant mixtures. Soft Matter 2008, 4(12), 2373. DOI:10.1039/b811291f.
  • Dickinson, E.; Ettelaie, R.; Kostakis, T.; Murray, B.S. Factors Controlling the Formation and Stability of Air Bubbles Stabilized by Partially Hydrophobic Silica Nanoparticles. Langmuir 2004, 20(20), 8517–8525. DOI:10.1021/la048913k.
  • Zhou, F.; Ren, W.; Wang, D.; Song, T.; Li, X.; Zhang, Y. Application of three-phase foam to fight an extraordinarily serious coal mine fire. Int. J. Coal Geol. 2006, 67(1), 95–100. DOI:10.1016/j.coal.2005.09.006.
  • Wang, H.; Wang, D.; Tang, Y.; Qin, B.; Xin, H. Experimental investigation of the performance of a novel foam generator for dust suppression in underground coal mines. Adv. Powder Technol. 2014, 25(3), 1053–1059. DOI:10.1016/j.apt.2014.02.011.
  • Sani, A.M.; Mohanty, K.K. Incorporation of clay nano-particles in aqueous foams. Colloids Surf., A 2009, 340(1), 174–181. DOI:10.1016/j.colsurfa.2009.03.026.
  • Tang, B.; Wu, Z. Oleophobic Modification of Hollow Glass Microspheres and Its Effect on the Foaming Capacity and Stability of Foam Extinguishing Agent. J. Chem. 2015, 2015, 1–6. DOI:10.1155/2015/923894.
  • Sun, Y.Q.; Gao, T. The optimum wetting angle for the stabilization of liquid-metal foams by ceramic particles: Experimental simulations. Metall. Mater. Trans. A 2002, 33(10), 3285–3292. DOI:10.1007/s11661-002-0315-y.
  • Johansson, G.; Pugh, R.J. The influence of particle size and hydrophobicity on the stability of mineralized froths. Int. J. Miner. Process. 1992, 34(1), 1-21. DOI:10.1016/0301-7516(92)90012-L.
  • Kaptay, G. On the equation of the maximum capillary pressure induced by solid particles to stabilize emulsions and foams and on the emulsion stability diagrams. Colloids Surf., A 2006, 282, 387–401. DOI:10.1016/j.colsurfa.2005.12.021.
  • Qin, B.; Jia, Y.; Lu, Y.; Li, Y.; Wang, D.; Chen, C. Micro fly-ash particles stabilized Pickering foams and its combustion-retardant characteristics. Fuel 2015, 154, 174–180. DOI:10.1016/j.fuel.2015.03.078.
  • Sun, Q.; Li, Z.; Li, S.; Jiang, L.; Wang, J.; Wang, P. Utilization of Surfactant-Stabilized Foam for Enhanced Oil Recovery by Adding Nanoparticles. Energy Fuels 2014, 28(4), 2384–2394. DOI:10.1021/ef402453b.
  • El-Didamony, H.; Abd El-Rahman, E.; Osman, R.M. Fire resistance of fired clay bricks-fly ash composite cement pastes. Ceram. Int. 2012, 38(1), 201–209. DOI:10.1016/j.ceramint.2011.06.050.
  • Vilches, L.F.; Leiva, C.; Vale, J.; Fernandez-Pereira, C. Insulating capacity of fly ash pastes used for passive protection against fire. Cem. Concr. Compos. 2005, 27(7), 776–781. DOI:10.1016/cemconcomp.2005.03.001.
  • Osei-Bonsu, K.; Shokri, N.; Grassia, P. Foam stability in the presence and absence of hydrocarbons: From bubble- to bulk-scale. Colloids Surf., A 2015, 481, 514–526. DOI:10.1016/j.colsurfa.2015.06.023.
  • Farajzadeh, R.; Andrianov, A.; Krastev, R.; Hirasaki, G.J.; Rossen, W.R. Foam-oil interaction in porous media: Implications for foam assisted enhanced oil recovery. Adv. Colloid Interface Sci. 2012, 183-184, 1–13. DOI:10.1016/j.cis.2012.07.002.
  • Yekeen, N.; Idris, A.K.; Manan, M.A.; Samin, A.M. Experimental study of the influence of silica nanoparticles on the bulk stability of SDS-foam in the presence of oil. J. Dispersion Sci. Technol. 2017, 38(3), 416–424. DOI:10.1080/01932691.2016.1172969.
  • Vitasari, D.; Grassia, P.; Martin, P. Surfactant transport onto a foam lamella. Chem. Eng. Sci. 2013, 102, 405–423. DOI:10.1016/j.ces.2013.08.041.
  • Hadjiiski, A.; Tcholakova, S.; Denkov, N.D.; Durbut, P.; Broze, G.; Mehreteab, A. Effect of Oily Additives on Foamability and Foam Stability. 2. Entry Barriers. Langmuir 2001, 17(22), 7011–7021. DOI:10.1021/la010601j.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.