213
Views
6
CrossRef citations to date
0
Altmetric
Articles

A facile fabrication of MOF for selective removal of chromium (III) from aqueous solution

, , , &
Pages 918-924 | Received 19 Apr 2018, Accepted 10 Jun 2018, Published online: 02 Jan 2019

References

  • Bhalothia, M.; Suman, N.; Baroliya, P.-K.; Dashora, R.; Goswami, A.-K. Marble Slurry Waste as a Scavenger Material for Cr (III) Ions from Aqueous Medium. Desalin. Water. Treat. 2016, 57, 17377–17383. doi:10.1080/19443994.2015.1084485.
  • Bagheri, A.-R.; Ghaedi, M.; Dashtian, K.; Hajati, S.; Bazrafshan, A.-A. Simultaneous Removal of Cu2+ and Cr3+ Ions from Aqueous Solution Based on Complexation with Eriochrome Cyanine-R and Derivative Spectrophotometric Method. Appl. Organometal. Chem. 2018, 32, e3918–e3929. doi:10.1002/aoc.3918.
  • Erdem, E.; Güngörmüş, H.; Kılınçarslan, R. The Investigation of Some Properties of Cement and removal of water Soluble Toxic Chromium (VI) Ion in Cement by Means of Different Reducing Agents. Constr. Build. Mater. 2016, 124, 626–630. doi:10.1016/j.conbuildmat.2016.07.087.
  • Markiewicz, B.; Komorowicz, I.; Barałkiewicz, D. Accurate Quantification of Total Chromium and Its Speciation Form Cr (VI) in Water by ICP-DRC-IDMS and HPLC/ICP-DRC-IDMS. Talanta. 2016, 152, 489–497. doi:10.1016/j.talanta.2016.02.049.
  • Li, L.; Li, Y.; Yang, C. Chemical Filtration of Cr (VI) with Electrospun Chitosan Nanofiber Membranes. Carbohydr. Polym. 2016, 140, 299–307. doi:10.1016/j.carbpol.2015.12.067.
  • Li, L.-L.; Feng, X.-Q.; Han, R.-P.; Zang, S.-Q.; Yang, G. Cr (VI) Removal via Anion Exchange on a Silver-Triazolate MOF. J. Hazard. Mater. 2017, 321, 622–628. doi:10.1016/j.jhazmat.2016.09.029.
  • Golbaz, S.; Jafari, A.-J.; Rafiee, M.; Kalantary, R.-R. Separate and Simultaneous Removal of Phenol, Chromium, and Cyanide from Aqueous Solution by Coagulation/Precipitation: Mechanisms and Theory. Chem. Eng. J. 2014, 253, 251–257. doi:10.1016/j.cej.2014.05.074.
  • Yang, J.; Yu, M.; Chen, W. Adsorption of Hexavalent Chromium from Aqueous Solution by Activated Carbon Prepared from Longan Seed: Kinetics, Equilibrium and Thermodynamics. J. Ind. Eng. Chem. 2015, 21, 414–422. doi:10.1016/j.jiec.2014.02.054.
  • Zang, T.; Cheng, Z.; Lu, L.; Jin, Y.; Xu, X.; Ding, W.; Qu, J. Removal of Cr (VI) by Modified and Immobilized Auricularia Auricula Spent Substrate in a Fixed-Bed Column. Ecol. Eng. 2017, 99, 358–365. doi:10.1016/j.ecoleng.2016.11.070.
  • Liu, C.; Fiol, N.; Poch, J.; Villaescusa, I. A New Technology for the Treatment of Chromium Electroplating Wastewater Based on Biosorption. J. Water. Process. Eng. 2016, 11, 143–151. doi:10.1016/j.jwpe.2016.05.002.
  • Kameda, T.; Ito, S.; Yoshioka, T. Kinetic and Equilibrium Studies of Urea Adsorption onto Activated Carbon: Adsorption Mechanism. J. Disper. Sci. Technol. 2017, 38, 1063–1066. doi:10.1080/01932691.2016.1219953.
  • Dehghani, M.-H.; Taher, M.-M.; Bajpai, A.-K.; Heibati, B.; Tyagi, I.; Asif, M.; Agarwal, S.; Gupta, V.-K. Removal of Noxious Cr (VI) Ions Using Single-Walled Carbon Nanotubes and Multi-Walled Carbon Nanotubes. Chem. Eng. J. 2015, 279, 344–352. doi:10.1016/j.cej.2015.04.151.
  • Yang, S.; Li, L.-Y.; Pei, Z.-G.; Li, C.-M.; Lv, J.-T.; Xie, J.-L.; Wen, B.; Zhang, S.-Z. Adsorption Kinetics, Isotherms and Thermodynamics of Cr (III) on Graphene Oxide. Colloid. Surface. A. 2014, 457, 100–106. doi:10.1016/j.colsurfa.2014.05.062.
  • Dhiwar, C.; Tiwari, A.; Bajpai, A.-K. Adsorption of Chromium on Composite Microspheres of Chitosan and Nano Iron Oxide. J. Disper. Sci. Technol. 2011, 32, 1661–1667. doi:10.1080/01932691.2010.505125.
  • Deravanesiyan, M.; Beheshti, M.; Malekpour, A. Alumina Nanoparticles Immobilization onto the NaX Zeolite and the Removal of Cr (III) and Co (II) Ions from Aqueous Solutions. J. Ind. Eng. Chem. 2015, 21, 580–586. doi:10.1016/j.jiec.2014.03.023.
  • Liu, S.; Cui, H.-Z.; Li, Y.-L.; Yang, A.-L.; Zhang, J.-F.; Zhong, R.; Zhou, Q.; Lin, M.; Hou, X.-F. Bis-Pyrazolyl Functionalized Mesoporous SBA-15 for the Extraction of Cr (III) and Detection of Cr (VI) in Artificial Jewelry Samples. Microchem. J. 2017, 131, 130–136. doi:10.1016/j.microc.2016.12.003.
  • Tian, C.; Zhao, J.; Zhang, J.; Chu, S.; Dang, Z.; Lin, Z.; Xing, B. Enhanced Removal of Roxarsone by Fe3O4@3D Graphene Nanocomposites: Synergistic Adsorption and Mechanism. Environ. Sci: Nano. 2017, 4, 2134–2143. doi:10.1039/c7en00758b.
  • Liu, W.; Ni, J.-R.; Yin, X.-C. Synergy of Photocatalysis and Adsorption for Simultaneous Removal of Cr (VI) and Cr (III) with TiO2 and Titanate Nanotubes. Water. Res. 2014, 53, 12–25. doi:10.1016/j.watres.2013.12.043.
  • Rangabhashiyam, S.; Suganya, E.; Lity, A.-V.; Selvaraju, N. Equilibrium and Kinetics Studies of Hexavalent Chromium Biosorption on a Novel Green Macroalgae Enteromorphasp. Res. Chem. Intermed. 2016, 42, 1275–1294. doi:10.1007/s11164-015-2085-3.
  • Saranya, N.; Nakkeeran, E.; Shrihari, S.; Selvaraju, N. Equilibrium and Kinetic Studies of Hexavalent Chromium Removal Using a Novel Biosorbent: Ruellia Patula Jacq. Arab. J. Sci. Eng. 2017, 42, 1545–1557. doi:10.1007/s13369-017-2416-3.
  • Teo, H.-W.-B.; Chakraborty, A.; Kayal, S. Evaluation of CH4 and CO2 Adsorption on HKUST-1 and MIL-101 (Cr) MOFs Employing Monte Carlo Simulation and Comparison with Experimental Data. Appl. Therm. Eng. 2017, 110, 891–900. doi:10.1016/j.applthermaleng.2016.08.126.
  • Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. HKUST-1 Catalyzed Room Temperature Hydrogenation of Acetophenone by Silanes. Catal. Commun. 2017, 97, 74–78. doi:10.1016/j.catcom.2017.03.023.
  • Chen, Q.; Chen, Q.-W.; Zhuang, C.; Tang, P.-P.; Lin, N.; Wei, L.-Q. Controlled Release of Drug Molecules in Metal-Organic Framework Material HKUST-1. Inorg. Chem. Commun. 2017, 79, 78–81. doi:10.1016/j.inoche.2017.03.027.
  • Hromadka, J.; Tokay, B.; Correia, R.; Morgan, S.-P.; Korposh, S. Carbon Dioxide Measurements Using Long Period Grating Optical Fibre Sensor Coated with Metal Organic Framework HKUST-1. Sensor. Actuat. B-Ch. 2018, 255, 2483–2494. doi:10.1016/j.snb.2017.09.041.
  • Tian, C.; Zhao, J.; Ou, X.; Wan, J.; Cai, Y.; Lin, Z.; Dang, Z.; Xing, B. Enhanced Adsorption of p-Arsanilic Acid from Water by Amine-Modified UiO-67 as Examined Using Extended X-Ray Absorption Fine Structure, X-Ray Photoelectron Spectroscopy, and Density Functional Theory Calculations. Environ. Sci. Technol. 2018, 52, 3466–3475. doi:10.1021/acs.est.7b05761.
  • Zhou, Z.; Fu, Y.; Qin, Q.; Lu, X.; Shi, X.; Zhao, C.; Xu, G. Synthesis of Magnetic Mesoporous Fe3O4@ PEI-MOF-5 for the Effective Enrichment of Malachite Green and Crystal Violet in Fish Samples. J. Chromatogr. A. 2018, 1560, 19–25. doi:10.1016/j.chroma.2018.05.016.
  • Dai, X.; Shi, X.; Huo, C.; Wang, X. Study on the Poly (Lactic Acid)/Nano MOFs Composites: Insights into the MOFs-Induced Crystallization Mechanism and the Effects of MOFs on the Properties of the Composites. Thermochim. Acta. 2017, 657, 39–46. doi:10.1016/j.tca.2017.09.015.
  • Zhao, X.-L.; Tan, Y.-X.; Wu, F.-C.; Niu, H.-Y.; Tang, Z.; Cai, Y.-Q.; Giesy, J.-P. Cu/Cu2O/CuO Loaded on the Carbon Layer Derived from Novel Precursors with Amazing Catalytic Performance. Sci. Total. Environ. 2016, 571, 380–387. doi:10.1016/j.scitotenv.2016.05.151.
  • Azad, F.-N.; Ghaedi, M.; Dashtian, K.; Hajati, S.; Pezeshkpour, V. Ultrasonically Assisted Hydrothermal Synthesis of Activated Carbon-HKUST-1-MOF Hybrid for Efficient Simultaneous Ultrasound-Assisted Removal of Ternary Organic Dyes and Antibacterial Investigation: Taguchi Optimization. Ultrason. Sonochem. 2016, 31, 383–393. doi:10.1016/j.ultsonch.2016.01.024.
  • Song, Y.-S.; Li, X.; Wei, C.-T.; Fu, J.-Y.; Xu, F.-G.; Tan, H.-L.; Tang, J.; Wang, L. A Green Strategy to Prepare Metal Oxide Superstructure from Metal-Organic Frameworks. Sci. Rep. 2015, 5, 8401–8408. doi:10.1038/srep08401.
  • Lin, S.; Song, Z.-L.; Che, G.-B.; Ren, A.; Li, P.; Liu, C.-B.; Zhang, J.-S. Adsorption Behavior of Metal-Organic Frameworks for Methylene Blue from Aqueous Solution. Micropor. Mesopor. Mat. 2014, 193, 27–34. doi:10.1016/j.micromeso.2014.03.004.
  • Liu, X.-X.; Luo, J.; Zhu, Y.-T.; Yang, Y.; Yang, S.-J. Removal of Methylene Blue from Aqueous Solutions by an Adsorbent Based on Metal-Organic Framework and Polyoxometalate. J. Alloy. Compd. 2015, 648, 986–993. doi:10.1016/j.jallcom.2015.07.065.
  • Wu, Y.-W.; Zhang, J.; Liu, J.-F.; Deng, Z.-L.; Han, M.-X.; Jiang, F.; Yuan, H.-Z. Determination of Chromium Species in Environmental Water and Human Serum Samples by FAAS after Magnetic Solid Phase Extraction. Atom. Spectrosc. 2011, 32, 41–47.
  • Jiang, X.; An, Q.-D.; Xiao, Z.-Y.; Zhai, S.-R.; Shi, Z. Mussel-Inspired Surface Modification of Untreated Wasted Husks with Stable Polydopamine/Polyethylenimine for Efficient Continuous Cr (VI) Removal. Mater. Res. Bull. 2018, 102, 218–225. doi:10.1016/j.materresbull.2018.02.037.
  • Akhtar, N.; Iqbal, M.; Zafar, S. I.; Iqbal, J. Biosorption Characteristics of Unicellular Green Alga Chlorella Sorokiniana Immobilized in Loofa Sponge for Removal of Cr (III). J. Environ. Sci-China. 2008, 20, 231–239. doi:10.1016/s1001-0742(08)60036-4.
  • Chakir, A.; Bessiere, J.; Kacemi, K.-E.; Marouf, B. A Comparative Study of the Removal of Trivalent Chromium from Aqueous Solutions by Bentonite and Expanded Perlite. J. Hazard. Mater. 2002, 95, 29–46. doi:10.1016/S0304-3894(01)00382-X.
  • Meunier, N.; Laroulandie, J.; Blais, J.-F.; Tyagi, R.-D. Cocoa Shells for Heavy Metal Removal from Acidic Solutions. Bioresource. Technol. 2003, 90, 255–263. doi:10.1016/S0960-8524(03)00129-9.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.