319
Views
10
CrossRef citations to date
0
Altmetric
Original Articles

Effects of additional salts on the interfacial tension of crude oil/zwitterionic gemini surfactant solutions

, , , , , & show all
Pages 1031-1038 | Received 16 May 2018, Accepted 24 Jun 2018, Published online: 01 Oct 2018

References

  • Butt, H. J. ; Graf, K. ; Kappl, M . Physics and Chemistry of Interfaces, 2nd ed; Wiley-VCH: Weinheim, 2008.
  • Zhang, L. ; Luo, L. ; Zhao, S. ; Yu, J. Y . Ultra low interfacial tension and interfacial dilational properties related to Enhanced Oil Recovery. Petroleum Science and Technology Research Advance; Montclaire, K.L . Ed.; Nova Science Publishers, New York, 2008; pp 81–139.
  • Wei, B. ; Li, H. ; Li, Q. Z. ; Lu, L. M. ; Li, Y. B. ; Pu, W. F. ; Wen, Y. B . Investigation of Synergism between Surface-Grafted Nano-Cellulose and Surfactants in Stabilized Foam Injection Process. Fuel 2018, 211, 223–232. DOI:10.1016/j.fuel.2017.09.054
  • Chung, J. ; Boudouris, B. W. ; Franses, E. I . Surface Tension Behavior of Aqueous Solutions of a Propoxylated Surfactant and Interfacial Tension Behavior against a Crude Oil. Colloids Surf. A 2018, 537, 163–172. DOI:10.1016/j.colsurfa.2017.10.011
  • Zhong, L. H. ; Nourafkan, E. ; Gao, H. ; Wen, D. S . Microemulsions Stabilized by in-Situ Synthesized Nanoparticles for Enhanced Oil Recovery. Fuel 2017, 210, 272–281.
  • Manshad, A. K. ; Rezaei, M. ; Moradi, S. ; Nowrouzi, I. ; Mohammadi, A. H . Wettability Alteration and Interfacial Tension (IFT) Reduction in Enhanced Oil Recovery (EOR) Process by Ionic Liquid Flooding. J. Mol. Liq. 2017, 248, 153–162. DOI:10.1016/j.molliq.2017.10.009
  • Mandal, A. ; Kar, S . A Thermodynamic Assessment of Micellization for a Mixture of Sodium Dodecyl Benzene Sulfonate and Tween 80 Surfactants for Ultralow Interfacial Tension. Fluid Phase Equilib. 2016, 408, 212–222. DOI:10.1016/j.fluid.2015.09.007
  • Menger, F. M. ; Littau, C. A . Gemini-Surfactants: Synthesis and Properties. J. Am. Chem. Soc. 1991, 113, 1451–1452. DOI:10.1021/ja00004a077
  • Kamal, M. S . A Review of Gemini Surfactants: potential Application in Enhanced Oil Recovery. J. Surfact. Deterg. 2016, 19, 223–236. DOI:10.1007/s11743-015-1776-5
  • Chen, H. ; Han, L. J. ; Luo, P. Y. ; Ye, Z. B . The Ultralow Interfacial Tensions between Crude Oils and Gemini Surfactant Solutions. J. Colloid Interface Sci. 2005, 285, 872–874. DOI:10.1016/j.jcis.2004.11.066
  • Guo, Y. J. ; Liu, J. X. ; Zhang, X. M. ; Feng, R. S. ; Li, H. B. ; Zhang, J. ; Lv, X. ; Luo, P. Y . Solution Property Investigation of Combination Flooding Systems Consisting of Gemini–Non-Ionic Mixed Surfactant and Hydrophobically Associating Polyacrylamide for Enhanced Oil Recovery. Energy Fuels 2012, 26, 2116–2123. DOI:10.1021/ef202005p
  • Gao, B. ; Sharma, M. M . A Family of Alkyl Sulfate Gemini Surfactants. 2. Water–Oil Interfacial Tension Reduction. J. Colloid Interface Sci. 2013, 407, 375–381. DOI:10.1016/j.jcis.2013.06.066
  • Hou, B. F. ; Wang, Y. F. ; Huang, Y . Mechanistic Study of Wettability Alteration of Oil-Wet Sandstone Surface Using Different Surfactants. Appl. Surf. Sci. 2015, 330, 56–64. DOI:10.1016/j.apsusc.2014.12.185
  • Nguele, R. ; Sasaki, K. ; Sugai, Y. ; Omondi, B. ; Al-Salim, H. S. ; Ueda, R . Interactions between Formation Rock and Petroleum Fluids during Microemulsion Flooding and Alteration of Heavy Oil Recovery Performance. Energy Fuels 2017, 31, 255–270. DOI:10.1021/acs.energyfuels.6b02216
  • Shakil, H. S. M. ; Shahzad, K. M. ; Sultan, A. S . Amido-Amine-Based Cationic Gemini Surfactants: Thermal and Interfacial Properties and Interactions with Cationic Polyacrylamide. J. Surfact. Deterg. 2017, 20, 47–55. DOI:10.1007/s11743-016-1896-6
  • Zhou, H. T. ; Liang, Y. P. ; Huang, P. ; Liang, T. ; Wu, H. Y. ; Lian, P. ; Leng, X. ; Jia, C. Q. ; Zhu, Y. G. ; Jia, H . Systematic Investigation of Ionic Liquid-Type Gemini Surfactants and Their Abnormal Salt Effects on the Interfacial Tension of a Water/Model Oil System. J. Mol. Liq. 2018, 249, 33–39. DOI:10.1016/j.molliq.2017.11.004
  • Jiang, P. ; Li, N. ; Ge, J. J. ; Zhang, G. C. ; Wang, Y. ; Chen, L. F. ; Zhang, L . Efficiency of a Sulfobetaine-Type Surfactant on Lowering IFT at Crude Oil–Formation Water Interface. Colloids Surf. A 2014, 443, 141–148. DOI:10.1016/j.colsurfa.2013.10.061
  • Zhang, Q. Q. ; Cai, B. X. ; Xu, W. J. ; Gang, H. Z. ; Liu, J. F. ; Yang, S. Z. ; Mu, B. Z . Novel Zwitterionic Surfactant Derived from Castor Oil and Its Performance Evaluation for Oil Recovery. Colloids Surf. A 2015, 483, 87–95. DOI:10.1016/j.colsurfa.2015.05.060
  • Zhao, J. H. ; Dai, C. L. ; Ding, Q. F. ; Du, M. Y. ; Feng, H. S. ; Wei, Z. Y. ; Chen, A. ; Zhao, M. W . The Structure Effect on the Surface and Interfacial Properties of Zwitterionic Sulfobetaine Surfactants for Enhanced Oil Recovery. RSC Adv. 2015, 5, 13993–14001. DOI:10.1039/C4RA16235H
  • Cui, Z. G. ; Qi, D. ; Song, B. L. ; Pei, X. M. ; Hu, X . Inhibiting Hydrophobization of Sandstones via Adsorption of Alkyl Carboxyl Betaines in Surfactant − Polymer Flooding Using Poly Alkylammonium Bromides. Energy Fuels 2016, 30, 2043–−2051. DOI:10.1021/acs.energyfuels.5b02810
  • Li, P. Q. ; Yang, C. ; Cui, Z. G. ; Song, B. L. ; Jiang, J. Z. ; Wang, Z. J . A New Type of Sulfobetaine Surfactant with Double Alkyl Polyoxyethylene Ether Chains for Enhanced Oil Recovery. J. Surfact. Deterg. 2016, 19, 967–977. DOI:10.1007/s11743-016-1839-2
  • Zhou, Z. H. ; Zhang, Q. ; Liu, Y. ; Wang, H. Z. ; Cai, H. Y. ; Zhang, F. ; Tian, M. Z. ; Liu, Z. Y. ; Zhang, L. ; Zhang, L . Effect of Fatty Acids on Interfacial Tensions of Novel Sulfobetaines Solutions. Energy Fuels 2014, 28, 1020–1027. DOI:10.1021/ef402416j
  • Cao, J. H. ; Zhou, Z. H. ; Xu, Z. C. ; Zhang, Q. ; Li, S. H. ; Cui, H. B. ; Zhang, L. ; Zhang, L . Synergism/Antagonism between Crude Oil Fractions and Novel Betaine Solutions in Reducing Interfacial Tension. Energy Fuels 2016, 30, 924–932.
  • Zheng, D. D. ; Zhou, Z. H. ; Zhang, Q. ; Zhang, L. ; Zhu, Y. ; Zhang, L . Effect of Inorganic Alkalis on Interfacial Tensions of Novel Betaine Solutions against Crude Oil. J. Pet. Sci. Eng. 2017, 152, 602–610. DOI:10.1016/j.petrol.2017.01.033
  • Jia, H. ; Lian, P. ; Liang, Y. P. ; Zhu, Y. G. ; Huang, P. ; Wu, H. Y. ; Leng, X. ; Zhou, H. T . Systematic Investigation of the Effects of Zwitterionic Surface Active Ionic Liquids on the Interfacial Tension of a Water/Crude Oil System and Their Application to Enhance Crude Oil Recovery. Energy Fuels 2018, 32, 154–160. DOI:10.1021/acs.energyfuels.7b02746
  • Kanoje, B. ; Padshala, S. ; Parikh, J. ; Sahoo, S. K. ; Kuperkar, K. ; Bahadur, P . Synergism and Aggregation Behaviour in an Aqueous Binary Mixture of Cationic–Zwitterionic Surfactants: physico-Chemical Characterization with Molecular Simulation Approach. Phys. Chem. Chem. Phys. 2018, 20, 670. DOI:10.1039/C7CP05917E
  • Zhou, M. ; Li, S. S. ; Zhang, Z. ; Wang, C. W. ; Luo, G. ; Zhao, J. Z . Progress in the Synthesis of Zwitterionic Gemini Surfactants. J. Surfact. Deterg. 2017, 20, 1243–1254. DOI:10.1007/s11743-017-2014-0
  • Zhang, Z. ; Zhen-Xian, Z. ; Yu-Rong, L. ; Yu, Z. ; Jie, C . Synthesis and Surface Properties of Novel Gemini Surfactants. Tenside Surfact. Deterg. 2012, 49, 413–416. DOI:10.3139/113.110211
  • Xue, C. L. ; Zhu, H. L. ; Zhang, T. T. ; Cao, D. L. ; Hu, Z. Y . Synthesis and Properties of Novel Alkylbetaine Zwitterionic Gemini Surfactants Derived from Cyanuric Chloride. Colloid Surf. A 2011, 375, 141–146. DOI:10.1016/j.colsurfa.2010.12.004
  • Geng, X. F. ; Hu, X. Q. ; Xia, J. J. ; Jia, X. C . Synthesis and Surface Activities of a Novel Di-Hydroxyl-Sulfate-Betaine-Type Zwitterionic Gemini Surfactants. Appl. Surf. Sci. 2013, 271, 284–290. DOI:10.1016/j.apsusc.2013.01.185
  • Zhou, T. H. ; Zhao, J. X . Synthesis and Thermotropic Liquid Crystalline Properties of Zwitterionic Gemini Surfactants Containing a Quaternary Ammonium and a Sulfate Group. J. Colloid Interface Sci. 2009, 338, 156–162. DOI:10.1016/j.jcis.2009.06.009
  • Liu, G. Y. ; Gu, D. M. ; Liu, H. Y. ; Ding, W. ; Luan, H. X. ; Lou, Y. M . Thermodynamic Properties of Micellization of Sulfobetaine-Type Zwitterionic Gemini Surfactants in Aqueous Solutions – A Free Energy Perturbation Study. J. Colloid Interface Sci. 2012, 375, 148–153. DOI:10.1016/j.jcis.2012.02.027
  • Geng, X. F. ; Hu, X. Q. ; Jia, X. C. ; Luo, L. J . Effects of Sodium Salicylate on the Microstructure of a Novel Zwitterionic Gemini Surfactant and Its Rheological Responses. Colloid Polym. Sci. 2014, 292, 915–921. DOI:10.1007/s00396-013-3137-0
  • Zhou, M. ; Zhang, Z. ; Xu, D. Y. ; Hou, L. T. ; Zhao, W. L. ; Nie, X. C. ; Zhou, L. ; Zhao, J. Z . Synthesis of Three Gemini Betaine Surfactants and Their Surface Active Properties. J. Taiwan Inst. Chem. Eng. 2017, 74, 7–13. DOI:10.1016/j.jtice.2016.10.012
  • Dong, Z. ; Zheng, Y. ; Zhao, J. S . Synthesis, Physico-Chemical Properties and Enhanced Oil Recovery Flooding Evaluation of Novel Zwitterionic Gemini Surfactants. J. Surfact. Deterg. 2014, 17, 1213–1222. DOI:10.1007/s11743-014-1616-z
  • Yoshimura, T. ; Ichinokawa, T. ; Kaji, M. ; Esumi, K . Synthesis and Surface-Active Properties of Sulfobetaine-Type Zwitterionic Gemini Surfactants. Colloids Surf. A 2006, 273, 208–212. DOI:10.1016/j.colsurfa.2005.08.023
  • Datwani, S. S. ; Stebe, K. J . The Dynamic Adsorption of Charged Amphiphiles: The Evolution of the Surface Concentration, Surface Potential, and Surface Tension. J. Colloid Interface Sci. 1999, 219, 282–297. DOI:10.1006/jcis.1999.6494
  • Liu, Z. Y. ; Zhang, L. ; Cao, X. L. ; Song, X. W. ; Jin, Z. Q. ; Zhang, L. ; Zhao, S . Effect of Electrolytes on Interfacial Tensions of Alkyl Ether Carboxylate Solutions. Energy Fuels 2013, 27, 3122–3129. DOI:10.1021/ef400458q
  • Liu, Z. Y. ; Li, Z. Q. ; Song, X. W. ; Zhang, J. C. ; Zhang, L. ; Zhang, L. ; Zhao, S . Dynamic Interfacial Tensions of Binary Nonionic–Anionic and Nonionic Surfactant Mixtures at Water–Alkane Interfaces. Fuel 2014, 135, 91–98. DOI:10.1016/j.fuel.2014.06.031
  • Ghosh, P . Coalescence of Air Bubbles at Air − Water Interface. Chem. Eng. Res. Des. 2004, 82, 849–854. DOI:10.1205/0263876041596715
  • Tichelkamp, T. ; Teigen, E. ; Nourani, M. ; Øye, G . Systematic Study of the Effect of Electrolyte Composition on Interfacial Tensions between Surfactant Solutions and Crude Oils. Chem. Eng. Sci. 2015, 132, 244–249. DOI:10.1016/j.ces.2015.04.032
  • Zhou, H. T. ; Wu, H. Y. ; Yang, Y. P. ; Leng, X. ; Liang, Y. P. ; Lian, P. ; Song, Y. L. ; Yi, Z. W. ; Liu, J. P. ; Jia, H . Facile Construction of Gemini-like Surfactants at the Interface and Their Effects on the Interfacial Tension of a Water/Model Oil System. RSC Adv. 2017, 7, 32413–32418. DOI:10.1039/C7RA03973E
  • Cayias, J. L. ; Schechter, R. S. ; Wade, W. H . Modeling Crude Oils for Low Interfacial Tension. Soc. Petrol. Eng. J. 1976, 16, 351–357. DOI:10.2118/5813-PA
  • Johnson, K. E. ; Emmanuel, N. ; Abu, Y. ; Benjamin, A. T . Effect of Magnesium and Sodium Salts on the Interfacial Characteristics of Soybean Lecithin Dispersants. Ind. Eng. Chem. Res. 2017, 56, 12608–12620.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.