77
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Experimental and numerical study on the thermal and hydrodynamic characteristics of non-Newtonian decaying swirl flows

&
Pages 1288-1299 | Received 22 May 2018, Accepted 04 Aug 2018, Published online: 03 Oct 2018

References

  • Goldstein, R. J.; Ibele, W. E.; Patankar, S. V.; Simon, T. W.; Kuehn, T. H.; Strykowski, P. J.; Tamma, K. K.; Heberlein, J. V. R.; Davidson, J. H.; Bischof, J.; et al. Heat Transfer—A Review of 2003 Literature. Int. J. Heat Mass Transf. 2006, 49, 451–534. DOI:10.1016/j.ijheatmasstransfer.2005.11.001
  • Wang, X. Q.; Mujumdar, A. S. Heat Transfer Characteristics of Nanofluids: A Review. Int. J. Therm. Sci. 2007, 46, 1–19. DOI:10.1016/j.ijthermalsci.2006.06.010
  • Farajollahi, B.; Etemad, S. G.; Hojjat, M. Heat Transfer of Nanofluids in a Shell and Tube Heat Exchanger. Int. J. Heat Mass Transfer 2010, 53, 12–17. DOI:10.1016/j.ijheatmasstransfer.2009.10.019
  • Heris, S. Z.; Etemad, S. G.; Esfahany, M. N. Experimental Investigation of Oxide Nanofluids Laminar Flow Convective Heat Transfer. Int. Commun. Heat Mass Transfer 2006, 33, 529–535. DOI:10.1016/j.icheatmasstransfer.2006.01.005
  • Rea, U.; McKrell, T.; Hu, L. W.; Buongiorno, J. Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina-Water and Zirconia-Water Nanofluids. Int. J. Heat Mass Transfer 2009, 52, 2042–2048. DOI:10.1016/j.ijheatmasstransfer.2008.10.025
  • Prasher, R.; Song, D.; Wang, J.; Phelan, P. Measurements of Nanofluid Viscosity and Its Implications for Thermal Applications. Appl. Phys. Lett. 2006, 89, 133108. DOI:10.1063/1.2356113
  • Kole, M.; Dey, T. K. Effect of Aggregation on the Viscosity of Copper Oxide-Gear Oil Nanofluids. Int. J. Therm. Sci. 2011, 50, 1741–1747. DOI:10.1016/j.ijthermalsci.2011.03.027
  • Hojjat, M.; Etemad, S. G.; Bagheri, R.; Thibault, J. Pressure Drop of Non-Newtonian Nanofluids Flowing Through a Horizontal Circular Tube. J. Disp. Sci. Technol. 2012, 33, 1066–1070. DOI:10.1080/01932691.2011.599216
  • Quintero, L. An Overview of Surfactant Applications in Drilling Fluids for the Petroleum Industry. J. Disp. Sci. Technol. 2002, 23, 393–404. DOI:10.1080/01932690208984212
  • Xuan, Y.; Jiang, G.; Li, Y. Nanographite Oxide as Ultrastrong Fluid-Loss-Control Additive in Water-Based Drilling Fluids. J. Disp. Sci. Technol. 2014, 35, 1386–1392. DOI:10.1080/01932691.2013.858350
  • Rooki, R. Estimation of Pressure Loss of Herschel–Bulkley Drilling Fluids during Horizontal Annulus Using Artificial Neural Network. J. Disp. Sci. Technol. 2015, 36, 161–169. DOI:10.1080/01932691.2014.904793
  • Jafari, M.; Dabir, S.; Farhadi, M.; Sedighi, K. Effects of a Three-Lobe Swirl Flow Generator on the Thermal and Flow Fields in a Heat Exchanging Tube: An Experimental and Numerical Approach. Energy Conver. Manag. 2017, 148, 1358–1371. DOI:10.1016/j.enconman.2017.06.074
  • Chouaieb, S.; Kriaa, W.; Mhiri, H.; Bournot, P. Swirl Flow Generator Effect on a Confined Coaxial Jet Characteristics. Int. J. Hydrog. Energy 2017, 42, 29014–29025. DOI:10.1016/j.ijhydene.2017.08.061
  • Huang, R. F.; Duc, L. M.; Hsu, C. M. Flow and Mixing Characteristics of Swirling Double-Concentric Jets Influenced by a Control Disc at Low Central Jet Reynolds Numbers. Int. J. Heat Fluid Flow 2016, 62, 233–246. DOI:10.1016/j.ijheatfluidflow.2016.10.006
  • Musa, O.; Xiong, C.; Changsheng, Z. Experimental and Numerical Investigation on the Ignition and Combustion Stability in Solid Fuel Ramjet with Swirling Flow. Acta Astronaut. 2017, 137, 157–167. DOI:10.1016/j.actaastro.2017.04.021
  • Wei, H.; Chen, X.; Wang, G.; Zhou, L.; An, S.; Shu, G. Effect of Swirl Flow on Spray and Combustion Characteristics with Heavy Fuel Oil under Two-Stroke Marine Engine Relevant Conditions. Appl. Therm. Eng. 2017, 124, 302–314. DOI:10.1016/j.applthermaleng.2017.05.202
  • Balakrishnan, P.; Srinivasan, K. Jet Noise Reduction Using Co-Axial Swirl Flow with Curved Vanes. Appl. Acoust. 2017, 126, 149–161. DOI:10.1016/j.apacoust.2017.05.009
  • Chen, B.; Ho, K.; Abakr, Y. A.; Chen, B. Fluid Dynamics and Heat Transfer Investigations of Swirling Decaying Flow in an Annular Pipe Part 1: Review, Problem Description, Verification and Validation. Int. J. Heat Mass Transf. 2016, 97, 1029–1043. DOI:10.1016/j.ijheatmasstransfer.2015.07.129
  • Chen, B.; Ho, K.; Abakr, Y. A.; Chen, B. Fluid Dynamics and Heat Transfer Investigations of Swirling Decaying Flow in an Annular Pipe Part 2: Fluid Flow. Int. J. Heat Mass Transf. 2016, 97, 1012–1028. DOI:10.1016/j.ijheatmasstransfer.2016.01.069
  • Jafari, M.; Farhadi, M.; Sedighi, K. An Experimental Study on the Effects of a New Swirl Flow Generator on Thermal Performance of a Circular Tube. Int. Comm. Heat Mass Transfer 2017, 87, 277–287. DOI:10.1016/j.icheatmasstransfer.2017.07.016
  • Omidi, M.; Farhadi, M.; Jafari, M. A Comprehensive Review on Double Pipe Heat Exchangers. Appl. Therm. Eng. 2017, 110, 1075–1090. DOI:10.1016/j.applthermaleng.2016.09.027
  • Salehi, J. M.; Heyhat, M. M.; Rajabpour, A. Enhancement of Thermal Conductivity of Silver Nanofluid Synthesized by a One-Step Method with the Effect of Polyvinylpyrrolidone on Thermal Behavior. Appl. Phys. Lett. 2013, 102, 231907. DOI:10.1063/1.4809998
  • Hojjat, M.; Etemad, S. G.; Bagheri, R.; Thibault, J. Convective Heat Transfer of Non-Newtonian Nanofluids through a Uniformly Heated Circular Tube. Int. J. Therm. Sci. 2011, 50, 525–531. DOI:10.1016/j.ijthermalsci.2010.11.006
  • Aydin, O.; Avci, M.; Markal, B.; Yazici, M. Y.; An Experimental Study on the Decaying Swirl Flow in a Tube. Int. Comm. Heat and Mass Transfer 2014, 55, 22–28. DOI:10.1016/j.icheatmasstransfer.2014.04.012

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.