124
Views
11
CrossRef citations to date
0
Altmetric
Original Articles

Facile synthesis of shell-core structured Fe3O4@ACS as recyclable magnetic adsorbent for methylene blue removal

, &
Pages 1736-1743 | Received 05 Jul 2018, Accepted 29 Sep 2018, Published online: 08 May 2019

References

  • Shanmuganathan, S.; Loganathan, P.; Kazner, C.; Johir, M. A. H.; Vigneswaran, S. Submerged Membrane Filtration Adsorption Hybrid System for the Removal of Organic Micropollutants from a Water Reclamation Plant Reverse Osmosis Concentrate. Desalination 2017, 401, 134–141. DOI:10.1016/j.desal.2016.07.048.
  • Zhan, Y. Q.; Wan, X. Y.; He, S. J.; Yang, Q. B.; He, Y. Design of Durable and Efficient Poly(arylene Ether Nitrile)/Bioinspired Polydopamine Coated Graphene Oxide Nanofibrous Composite Membrane for Anionic Dyes Separation. Chem. Eng. J. 2018, 333, 132–145. DOI:10.1016/j.cej.2017.09.147.
  • Oh, Y.; Armstrong, D. L.; Finnerty, C.; Zheng, S.; Hu, M.; Torrents, A.; Mi, B. Understanding the pH-Responsive Behavior of Graphene Oxide Membrane in Removing Ions and Organic Micropollulants. J. Membrane Sci. 2017, 541, 235–243. DOI:10.1016/j.memsci.2017.07.005.
  • Bassyouni, D. G.; Hamad, H. A.; El-Ashtoukhy, E. Z.; Amin, N. K.; El-Latif, M. M. A. Fabrication, Comparative Performance of Anodic Oxidation and Electrocoagulationas Clean Processes for Electrocatalytic Degradation of Diazo Dye AcidBrown 14 in Aqueous Medium. J. Hazard. Mater. 2017, 335, 178–187. DOI:10.1016/j.jhazmat.2017.04.045.
  • Lv, Z.; Zhou, H.; Liu, H.; Liu, B. H.; Liang, M. F.; Guo, H. Controlled Assemble of Oxygen Vacant CeO2@Bi2WO6 Hollow Magnetic Microcapsule Heterostructures for Visible-Light Photocatalytic Activity. Chem. Eng. J. 2017, 330, 1297–1305. DOI:10.1016/j.cej.2017.08.074.
  • Wan, X. Y.; Zhan, Y. Q.; Long, Z. H.; Zeng, G. Y.; He, Y. Core@Double-Shell Structured Magnetic Halloysite Nanotube Nano-Hybrid as Efficient Recyclable Adsorbent for Methylene Blue Removal. Chem. Eng. J. 2017, 330, 491–504. DOI:10.1016/j.cej.2017.07.178.
  • Diagboya, P. N.; Dikio, E. D. Scavenging of Aqueous Toxic Organic and Inorganic Cations Using Novel Facile Magneto-Carbon Black-Clay Composite Adsorbent. J. Clean Prod. 2018, 180, 71–80. DOI:10.1016/j.jclepro.2018.01.166.
  • Wang, H. Y.; Wang, B. D.; Li, J. H.; Zhu, T. L. Adsorption Equilibrium and Thermodynamics of Acetaldehyde/Acetone on Activated Carbon. Sep. Purif. Technol. 2019, 209, 535–541. DOI:10.1016/j.seppur.2018.07.076.
  • Foo, K. Y.; Hameed, B. H. A Cost Effective Method for Regeneration of Durian Shell and Jackfruit Peel Activated Carbons by Microwave Irradiation. Chem. Eng. J. 2012, 193–194, 404–409. DOI:10.1016/j.cej.2012.04.055.
  • Oh, W.-D.; Lua, S.-K.; Dong, Z.; Lim, T.-T. Performance of Magnetic Activated Carbon Composite as Peroxymonosulfate Activator and Regenerable Adsorbent via Sulfate Radical-Mediated Oxidation Processes. J. Hazard. Mater. 2015, 284, 1–9. DOI:10.1016/j.jhazmat.2014.10.042.
  • Wang, J.; Sun, C.; Lin, B. C.; Huang, Q. X.; Ma, Z. Y.; Chi, Y.; Yan, J. H. Micro- and Mesoporous-Enriched Carbon Materials Prepared from a Mixture of Petroleum-Derived Oily Sludge and Biomass. Fuel Process Technol. 2018, 171, 140–147. DOI:10.1016/j.fuproc.2017.11.013.
  • Song, Q.; Zhang, Z. J. Shape Control and Associated Magnetic Properties of Spinel Cobalt Ferrite Nanocrystals. J. Am. Chem. Soc. 2004, 126, 6164–6168. DOI:10.1021/ja049931r.
  • Zhang, G.; Liu, H.; Liu, R.; Qu, J. Removal of Phosphate from Water by a Fe-Mn binary oxide adsorbent. J. Colloid Interf. Sci. 2009, 335, 168–174. DOI:10.1016/j.jcis.2009.03.019.
  • Faulconer, E. K.; von Reitzenstein, N. V. H.; Mazyck, D. W. Optimization of Magnetic Powdered Activated Carbon for Aqueous Hg(II) Removal and Magnetic Recovery. J. Hazard. Mater. 2012, 199–200, 9–14. DOI:10.1016/j.jhazmat.2011.10.023.
  • Shao, L. N.; Ren, Z. M.; Zhang, G. S.; Chen, L. L. Facile Synthesis, Characterization of a MnFe2O4/Activated Carbon Magnetic Composite and Its Effectiveness in Tetracycline Removal. Mater. Chem. Phys. 2012, 135, 16–24. DOI:10.1016/j.matchemphys.2012.03.035.
  • Guo, L.; Cui, X.; Li, Y.; He, Q.; Zhang, L.; Bu, W.; Shi, J. Hollow Mesoporous Carbon Spheres with Magnetic Cores and Their Performance as Separable Bilirubin Adsorbents. Chem. Asian J. 2009, 4, 1480–1485. DOI:10.1002/asia.200900113.
  • Raj, K. G.; Joy, P. A. Coconut Shell Based Activated Carbon–Iron Oxide Magnetic Nanocomposite for Fast and Efficient Removal of Oil Spills. J. Environ. Chem. Eng. 2015, 3, 2068–2075. DOI:10.1016/j.jece.2015.04.028.
  • Cho, D. W.; Lee, J.; Ok, Y. S.; Kwon, E. E.; Song, H. Fabrication of a Novel Magnetic Carbon Nanocomposite Adsorbent via Pyrolysis of Sugar. Chemosphere 2016, 163, 305–312. DOI:10.1016/j.chemosphere.2016.08.025.
  • Chen, Y.; Chen, H.; Zeng, D.; Tian, Y.; Chen, F.; Feng, J.; Shi, J. Core/Shell Structured Hollow Mesoporous Nanocapsules: A Potential Platform for Simultaneous Cell Imaging and Anticancer Drug Delivery. ACS Nano 2010, 4, 6001–6013. DOI:10.1021/nn1015117.
  • Chen, Y.; Chen, H. R.; Guo, L. M.; He, Q. J.; Chen, F.; Zhou, J.; Feng, J. W.; Shi, J. L. Hollow/Rattle-Type Mesoporous Nanostructures by a Structural Difference-Based Selective Etching Strategy. ACS. Nano 2010, 4, 529–539. DOI:10.1021/nn901398j.
  • Zhao, W. R.; Chen, H. R.; Li, Y. S.; Liang, L.; Lang, M. D.; Shi, J. L. Uniform Rattle-Type Hollow Magnetic Mesoporous Spheres as Drug Delivery Carriers and Their Sustained-Release Property. Adv. Funct. Mater. 2008, 18, 2780–2788. DOI:10.1002/adfm.200701317.
  • Rai, P.; Gautam, R. K.; Banerjee, S.; Rawat, V.; Chattopadhyaya, M. C. Synthesis and Characterization of a Novel SnFe2O4@Activated Carbon Magnetic Nanocomposite and Its Effectiveness in the Removal of Crystal Violet from Aqueous Solution. J. Environ. Chem. Eng. 2015, 3, 2281–2291. DOI:10.1016/j.jece.2015.08.017.
  • Jiang, T.; Liang, Y. D.; He, Y. J.; Wang, Q. Activated Carbon/NiFe2O4 Magnetic Composite: A Magnetic Adsorbent for the Adsorption of Methyl Orange. J. Environ. Chem. Eng. 2015, 3, 1740–1751. DOI:10.1016/j.jece.2015.06.020.
  • Lee, M. E.; Park, J. H.; Chung, J. W.; Lee, C. Y.; Kang, S. Removal of Pb and Cu Ions from Aqueous Solution by Mn3O4-Coated Activated Carbon. J. Ind. Eng. Chem. 2015, 21, 470–475. DOI:10.1016/j.jiec.2014.03.006.
  • Zhang, G. S.; Qu, J. H.; Liu, H. J.; Cooper, A. T.; Ch. Wu, R. CuFe2O4/Activated Carbon Composite: A Novel Magnetic Adsorbent for the Removal of Acid Orange II and Catalytic Regeneration. Chemosphere 2007, 68, 1058–1066. DOI:10.1016/j.chemosphere.2007.01.081.
  • Wang, Y.; Sun, H.; Ang, H. M.; Tadé, M. O.; Wang, S. Magnetic Fe3O4/Carbon Sphere/Cobalt Composites for Catalytic Oxidation of Phenol Solutions with Sulfate Radicals. Chem. Eng. J. 2014, 245, 1–5. DOI:10.1016/j.cej.2014.02.013.
  • Zhang, B. B.; Xu, J. C.; Xin, P. H.; Han, Y. B.; Hong, B.; Jin, H. X.; Jin, D. F.; Peng, X. L.; Li, J.; Gong, J.; et al. Magnetic Properties and Adsorptive Performance of Manganese-Zinc Ferrites/Activated Carbon Nanocomposites. J. Solid State Chem. 2015, 221, 302–305. DOI:10.1016/j.jssc.2014.10.020.
  • Wang, F. Effect of Oxygen-Containing Functional Groups on the Adsorption of Cationic Dye by Magnetic Graphene Nanosheets. Chem. Eng. Res. Design 2017, 128, 155–161. DOI:10.1016/j.cherd.2017.10.007.
  • Shi, P. H.; Su, R. J.; Zhu, S. B.; Zhu, M. C.; Li, D. X.; Xu, S. H. Supported Cobalt Oxide on Graphene Oxide: highly Efficient Catalysts for the Removal of Orange II from Water. J. Hazard. Mater. 2012, 229–230, 331–339. DOI:10.1016/j.jhazmat.2012.06.007.
  • Huang, Y.; Dong, Z.; Jia, D.; Guo, Z.; Cho, W. I. Preparation and Characterization of Core–Shell Structure Fe3O4/C Nanoparticles with Unique Stability and High Electrochemical Performance for Lithium-Ion Battery Anode Material. Electrochim. Acta 2011, 56, 9233–9239. DOI:10.1016/j.electacta.2011.07.141.
  • Wang, F.; Ma, Y. Q. MPC-973: A Low-Cost and Effective Adsorbent for the Removal of Nitrobenzene from Aqueous Solutions. Mater. Chem. Phys. 2018, 208, 157–162. DOI:10.1016/j.matchemphys.2018.01.049.
  • Xu, C.; Wang, X.; Zhu, J.; Yang, X.; Lu, L. Deposition of Co3O4 Nanoparticles onto Exfoliated Graphite Oxide Sheets. J. Mater. Chem. 2008, 18, 5625–5629. DOI:10.1039/b809712g.
  • Liu, X.; Zhang, D.; Guo, B.; Qu, Y.; Tian, G.; Yue, H. J.; Feng, S. H. Facile Synthesis of Mesoporous FeNi-Alloyed Carbonaceous Microsphere as Recyclable Magnetic Adsorbent for Trichloroethylene Removal. RSC Adv. 2015, 5, 93491–93498. DOI:10.1039/C5RA17165B.
  • Abellán, G.; Martínez, J. G.; Otero, T. F.; Ribera, A.; Coronado, E. A Chemical and Electrochemical Multivalent Memory Made from FeNi3-Graphene Nanocomposites. Electrochem. Commun. 2014, 39, 15–18. DOI:10.1016/j.elecom.2013.11.026.
  • Wang, F. Novel High Performance Magnetic Activated Carbon for Phenol Removal: equilibrium, Kinetics and Thermodynamics. J. Porous Mater. 2017, 24, 1309–1317. DOI:10.1007/s10934-017-0372-7.
  • Saeed, A.; Akhter, M.; Iqbal, M. Removal and Recovery of Heavy Metals from Aqueous Solution Using Papaya Wood as a New Biosorbent. Sep. Purif. Technol. 2005, 45, 25–31. DOI:10.1016/j.seppur.2005.02.004.
  • Guo, Y. F.; Deng, J.; Zhu, J. Y.; Zhou, X. J.; Bai, R. B. Removal of Mercury (II) and Methylene Blue from Water Environment with Magnetic Graphene Oxide: adsorption Kinetics, Isotherms and Mechanism. RSC Adv. 2016, 6, 82523–82536. DOI:10.1039/C6RA14651A.
  • Wang, F. A Novel Magnetic Activated Carbon Produced via Hydrochloric Acid Pickling Water Activation for Methylene Blue Removal. J. Porous Mater. 2018, 25, 611–619. DOI:10.1007/s10934-017-0474-2.
  • Yan, L. G.; Yang, K.; Shan, R. R.; Yan, T.; Wei, J.; Yu, S. J.; Yu, H. Q.; Du, B. Kinetic, Isotherm and Thermodynamic Investigations of Phosphate Adsorption onto Core–Shell Fe3O4@LDHs Composites with Easy Magnetic Separation Assistance. J. Colloid Interf. Sci. 2015, 448, 508–516. DOI:10.1016/j.jcis.2015.02.048.
  • Zhang, L.; Jiang, X. Q.; Xu, T. C.; Yang, L. J.; Zhang, Y. Y.; Jin, H. J. Sorption Characteristics and Separation of Rhenium Ions from Aqueous Solutions Using Modified nano-Al2O3. Ind. Eng. Chem. Res. 2012, 51, 5577–5584. DOI:10.1021/ie300008v.
  • Kr. Bharali, R.; Bhattacharyya, K. G. Biosorption of Fluoride on Neem (Azadirachta Indica) Leaf Powder. J. Environ. Chem. Eng. 2015, 3, 662–669. DOI:10.1016/j.jece.2015.02.007.
  • Kannan, N.; Sundaram, M. M. Kinetics and Mechanism of Removal of Methylene Blue by Adsorption on Various carbons-A Comparative Study. Dyes. Pigments 2001, 51, 25–40. DOI:10.1016/S0143-7208(01)00056-0.
  • Apul, O. G.; Shao, T.; Zhang, S.; Karanfil, T. Impact of Carbon Nanotube Morphology on Phenanthrene Adsorption. Environ. Toxicol. Chem. 2012, 31, 73–78. DOI:10.1002/etc.705.
  • Ghaedi, M.; Ghaedi, A. M.; Hossainpour, M.; Ansari, A.; Habibi, M. H.; Asghari, A. R. Least Square-Support Vector (LS-SVM) Method for Modeling of Methylene Blue Dye Adsorption Using Copper Oxide Loaded on Activated Carbon: kinetic and Isotherm Study. J. Ind. Eng. Chem. 2014, 20, 1641–1649. DOI:10.1016/j.jiec.2013.08.011.
  • Wang, P.; Cao, M.; Wang, C.; Ao, Y.; Hou, J.; Qian, J. Kinetics and Thermodynamics of Adsorption of Methylene Blue by a Magnetic Graphene-Carbon Nanotube Composite. Appl. Surf. Sci. 2014, 290, 116–124. DOI:10.1016/j.apsusc.2013.11.010.
  • Chen, H.; He, J. Facile Synthesis of Monodisperse Manganese Oxide Nanostructures and Their Application in Water Treatment. J. Phys. Chem. C 2008, 112, 17540–17545. DOI:10.1021/jp806160g.
  • Wu, S. P.; Huang, J. C.; Zhuo, C. H.; Zhang, F. Y.; Sheng, W. C.; Zhu, M. Y. One-Step Fabrication of Magnetic Carbon Nanocomposite as Adsorbent for Removal of Methylene Blue. J. Inorg. Organomet. Polym. 2016, 26, 632–639. DOI:10.1007/s10904-016-0355-1.
  • Zhang, J. W.; Azam, M. S.; Shi, C.; Huang, J.; Bin, B.; Liu, Q. X.; Zeng, H. B. Poly(acrylic Acid) Functionalized Magnetic Graphene Oxide Nanocomposite for Removal of Methylene Blue. RSC Adv. 2015, 5, 32272–32282. DOI:10.1039/C5RA01815C.
  • Ai, L. H.; Zhang, C. Y.; Chen, Z. L. Removal of Methylene Blue from Aqueous Solution by a Solvothermal-Synthesized Graphene/Magnetite Composite. J. Hazard. Mater. 2011, 192, 1515–1524. DOI:10.1016/j.jhazmat.2011.06.068.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.