369
Views
35
CrossRef citations to date
0
Altmetric
Original Articles

One-pot synthesis of a novel magnetic activated carbon/clay composite for removal of heavy metals from aqueous solution

, , , , , & ORCID Icon show all
Pages 1761-1776 | Received 08 Aug 2018, Accepted 20 Oct 2018, Published online: 30 Nov 2018

References

  • Albakri, M. A.; Abdelnaby, M. M.; Saleh, T. A.; Al Hamouz, O. C. S. New Series of Benzene-1,3,5-Triamine Based Cross-Linked Polyamines and Polyamine/CNT Composites for Lead Ion Removal from Aqueous Solutions. Chem. Eng. J. 2018, 333, 76–84. DOI: 10.1016/j.cej.2017.09.152.
  • Cho, D. W.; Jeon, B. H.; Chon, C. M.; Kim, Y.; Schwartz, F. W.; Lee, E. S.; Song, H. A Novel Chitosan/Clay/Magnetite Composite for Adsorption of Cu(II) and as(V). Chem. Eng. J. 2012, 200–202, 654–662. DOI: 10.1016/j.cej.2012.06.126.
  • Le, V. T.; Doan, V. D.; Nguyen, D. D.; Nguyen, H. T.; Ngo, Q. P.; Tran, T. K. N.; Le, H. S. A Novel Cross-Linked Magnetic Hydroxyapatite/Chitosan Composite: Preparation, Characterization, and Application for Ni(II) Ion Removal from Aqueous Solution. Water Air Soil Pollut. 2018, 229, 1–14. DOI: 10.1007/s11270-018-3762-9.
  • Cheng, L.; Zhang, B.; Huo, W.; Cao, Z.; Liu, W.; Liao, J.; Xia, W.; Xu, S.; Li, Y. Fetal Exposure to Lead during Pregnancy and the Risk of Preterm and Early-Term Deliveries. Int. J. Hyg. Environ. Health. 2017, 220, 984–989. DOI: 10.1016/j.ijheh.2017.05.006.
  • Thuan, L. V.; Chau, T. B.; Ngan, T. T. K.; Vu, T. X.; Nguyen, D. D.; Nguyen, M. H.; Thao, D. T. T.; To Hoai, N.; Sinh, L. H. Preparation of Cross-Linked Magnetic Chitosan Particles from Steel Slag and Shrimp Shells for Removal of Heavy Metals. Environ. Technol. 2018, 39, 1745–1752. DOI: 10.1080/09593330.2017.1337236.
  • Mehta, D.; Mazumdar, S.; Singh, S. K. Magnetic Adsorbents for the Treatment of Water/Wastewater—A Review. J. Water Proc. Eng. 2015, 7, 244–265. DOI: 10.1016/j.jwpe.2015.07.001.
  • Bée, A.; Obeid, L.; Mbolantenaina, R.; Welschbillig, M.; Talbot, D. Magnetic Chitosan/Clay Beads: A Magsorbent for the Removal of Cationic Dye from Water. J. Magn. Magn. Mater. 2017, 421, 59–64. DOI: 10.1016/j.jmmm.2016.07.022.
  • Gul, K.; Sohni, S.; Waqar, M.; Ahmad, F.; Nik Norulaini, N. A.; Omar, A. K. Functionalization of Magnetic Chitosan with Graphene Oxide for Removal of Cationic and Anionic Dyes from Aqueous Solution. Carbohydr. Polym. 2016, 152, 520–531. DOI: 10.1016/j.carbpol.2016.06.045.
  • Zhu, H.-Y.; Fu, Y.-Q.; Jiang, R.; Jiang, J.-H.; Xiao, L.; Zeng, G.-M.; Zhao, S.-L.; Wang, Y. Adsorption Removal of congo Red onto Magnetic Cellulose/Fe3O4/Activated Carbon Composite: Equilibrium, Kinetic and Thermodynamic Studies. Chem. Eng. J. 2011, 173, 494–502. DOI: 10.1016/j.cej.2011.08.020.
  • Li, C.; Lu, J.; Li, S.; Tong, Y.; Ye, B. Synthesis of Magnetic Microspheres with Sodium Alginate and Activated Carbon for Removal of Methylene Blue. Mater. 2017, 10, 84. DOI: 10.3390/ma10010084.
  • Lou, J.; Xu, X.; Gao, Y.; Zheng, D.; Wang, J.; Li, Z. Preparation of Magnetic Activated Carbon from Waste Rice Husk for the Determination of Tetracycline Antibiotics in Water Samples. RSC Adv. 2016, 6, 112166–112174. DOI: 10.1039/C6RA24397E.
  • Putro, J. N.; Santoso, S. P.; Ismadji, S.; Ju, Y.-H. Investigation of Heavy Metal Adsorption in Binary System by Nanocrystalline Cellulose—Bentonite Nanocomposite: Improvement on Extended Langmuir Isotherm Model. Micropor. Mesopor. Mater. 2017, 246, 166–177. DOI: 10.1016/j.micromeso.2017.03.032.
  • Yan, G.; Theng, B.; Churchman, G.; Gates, W. Chapter 5.1 Clays and Clay Minerals for Pollution Control. In Handbook of Clay Science. Part B: Techniques and Applications. 2nd ed.; The Netherlands: Elsevier, 2013; pp 587–644.
  • Uddin, M. K. A Review on the Adsorption of Heavy Metals by Clay Minerals, with Special Focus on the past Decade. Chem. Eng. J. 2017, 308, 438–462. DOI: 10.1016/j.cej.2016.09.029.
  • Burakov, A. E.; Galunin, E. V.; Burakova, I. V.; Kucherova, A. E.; Agarwal, S.; Tkachev, A. G.; Gupta, V. K. Adsorption of Heavy Metals on Conventional and Nanostructured Materials for Wastewater Treatment Purposes: A Review. Ecotoxicol. Environ. Saf. 2018, 148, 702–712. DOI: 10.1016/j.ecoenv.2017.11.034.
  • Alslaibi, T. M.; Abustan, I.; Ahmad, M. A.; Foul, A. A. A Review: Production of Activated Carbon from Agricultural Byproducts via Conventional and Microwave Heating. J. Chem. Technol. Biotechnol. 2013, 88, 1183–1190. DOI: 10.1002/jctb.4028.
  • Chen, H.; Guo, Y. C.; Wang, F.; Wang, G.; Qi, P. R.; Guo, X. H.; Dai, B.; Yu, F. An Activated Carbon Derived from Tobacco Waste for Use as a Supercapacitor Electrode Material. New Carbon Mater. 2017, 32, 592–599. DOI: 10.1016/S1872-5805(17)60140-9.
  • Al-Rahbi, A. S.; Williams, P. T. Production of Activated Carbons from Waste Tyres for Low Temperature NOx Control. Waste Manag. 2016, 49, 188–195. DOI: 10.1016/j.wasman.2016.01.030.
  • Fadhil, A. B.; Ahmed, A. I.; Salih, H. A. Production of Liquid Fuels and Activated Carbons from Fish Waste. Fuel. 2017, 187, 435–445. DOI: 10.1016/j.fuel.2016.09.064.
  • Baysal, M.; Bilge, K.; Yılmaz, B.; Papila, M.; Yürüm, Y. Preparation of High Surface Area Activated Carbon from Waste-Biomass of Sunflower Piths: Kinetics and Equilibrium Studies on the Dye Removal. J. Environ. Chem. Eng. 2018, 6, 1702–1713. DOI: 10.1016/j.jece.2018.02.020.
  • Pallarés, J.; González-Cencerrado, A.; Arauzo, I. Production and Characterization of Activated Carbon from Barley Straw by Physical Activation with Carbon Dioxide and Steam. Biomass Bioenerg. 2018, 115, 64–73. DOI: 10.1016/j.biombioe.2018.04.015.
  • Nabais, J. M. V.; Nunes, P.; Carrott, P. J. M.; Ribeiro Carrott, M. M. L.; García, A. M.; Díaz-Díez, M. A. Production of Activated Carbons from Coffee Endocarp by CO2 and Steam Activation. Fuel Process. Technol. 2008, 89, 262–268. DOI: 10.1016/j.fuproc.2007.11.030.
  • Santos, D. C. d.; Adebayo, M. A.; Lima, E. C.; Pereira, S. F. P.; Cataluña, R.; Saucier, C.; Thue, P. S.; Machado, F. M. Application of Carbon Composite Adsorbents Prepared from Coffee Waste and Clay for the Removal of Reactive Dyes from Aqueous Solutions. J. Brazil. Chem. Soc. 2015, 26, 924–938. DOI: 10.5935/0103-5053.20150053.
  • Jutakridsada, P.; Prajaksud, C.; Kuboonya-Aruk, L.; Theerakulpisut, S.; Kamwilaisak, K. Adsorption Characteristics of Activated Carbon Prepared from Spent Ground Coffee. Clean Techn. Environ. Policy. 2016, 18, 639–645. DOI: 10.1007/s10098-015-1083-x.
  • Bouchenafa-Saïb, N.; Mekarzia, A.; Bouzid, B.; Mohammedi, O.; Khelifa, A.; Benrachedi, K.; Belhaneche, N. Removal of Malathion from Polluted Water by Adsorption onto Chemically Activated Carbons Produced from Coffee Grounds. Desalin. Water Treat. 2014, 52, 4920–4927. DOI: 10.1080/19443994.2013.808845.
  • Jung, K.-W.; Choi, B. H.; Hwang, M.-J.; Jeong, T.-U.; Ahn, K.-H. Fabrication of Granular Activated Carbons Derived from Spent Coffee Grounds by Entrapment in Calcium Alginate Beads for Adsorption of Acid Orange 7 and Methylene Blue. Bioresour. Technol. 2016, 219, 185–195. DOI: 10.1016/j.biortech.2016.07.098.
  • Cazetta, A. L.; Pezoti, O.; Bedin, K. C.; Silva, T. L.; Paesano Junior, A.; Asefa, T.; Almeida, V. C. Magnetic Activated Carbon Derived from Biomass Waste by Concurrent Synthesis: Efficient Adsorbent for Toxic Dyes. ACS Sustainable Chem. Eng. 2016, 4, 1058–1068. DOI: 10.1021/acssuschemeng.5b01141.
  • Boonamnuayvitaya, V.; Chaiya, C.; Tanthapanichakoon, W.; Jarudilokkul, S. Removal of Heavy Metals by Adsorbent Prepared from Pyrolyzed Coffee Residues and Clay. Sep. Purif. Technol. 2004, 35, 11–22. DOI: 10.1016/S1383-5866(03)00110-2.
  • Qin, L.; Yan, L.; Chen, J.; Liu, T.; Yu, H.; Du, B. Enhanced Removal of Pb2+, Cu2+, and Cd2+ by Amino-Functionalized Magnetite/Kaolin Clay. Ind. Eng. Chem. Res. 2016, 55, 7344–7354. DOI: 10.1021/acs.iecr.6b00657.
  • Yan, L.; Li, S.; Yu, H.; Shan, R.; Du, B.; Liu, T. Facile Solvothermal Synthesis of Fe3O4/Bentonite for Efficient Removal of Heavy Metals from Aqueous Solution. Powder Technol. 2016, 301, 632–640. DOI: 10.1016/j.powtec.2016.06.051.
  • Van Thuan, T.; Quynh, B. T. P.; Nguyen, T. D.; Ho, V. T. T.; Bach, L. G. Response Surface Methodology Approach for Optimization of Cu2+, Ni2+ and Pb2+ Adsorption Using KOH-Activated Carbon from Banana Peel. Surf. Interfac. 2017, 6, 209–217. DOI: 10.1016/j.surfin.2016.10.007.
  • Xie, A.; Dai, J.; Chen, X.; He, J.; Chang, Z.; Yan, Y.; Li, C. Hierarchical Porous Carbon Materials Derived from a Waste Paper Towel with Ultrafast and Ultrahigh Performance for Adsorption of Tetracycline. RSC Adv. 2016, 6, 72985–72998. DOI: 10.1039/C6RA17286E.
  • Noyan, H.; Önal, M.; Sarikaya, Y. The Effect of Heating on the Surface Area, Porosity and Surface Acidity of a Bentonite. Clays Clay Miner. 2006, 54, 375–381. DOI: 10.1346/CCMN.2006.0540308.
  • Mahdi, Z.; Hanandeh, A. E.; Yu, Q. Influence of Pyrolysis Conditions on Surface Characteristics and Methylene Blue Adsorption of Biochar Derived from Date Seed Biomass. Waste Biomass Valor. 2017, 8, 2061–2073. DOI: 10.1007/s12649-016-9714-y.
  • He, W.; Ma, Q.; Wang, J.; Yu, J.; Bao, W.; Ma, H.; Amrane, A. Preparation of Novel Kaolin-Based Particle Electrodes for Treating Methyl Orange Wastewater. Appl. Clay Sci. 2014, 99, 178–186. DOI: 10.1016/j.clay.2014.06.030.
  • Jain, A.; Tripathi, S. K. Nano-Porous Activated Carbon from Sugarcane Waste for Supercapacitor Application. J. Energ. Stor. 2015, 4, 121–127. DOI: 10.1016/j.est.2015.09.010.
  • Danalıoğlu, S. T.; Bayazit, ŞS.; Kerkez Kuyumcu, Ö.; Salam, M. A. Efficient Removal of Antibiotics by a Novel Magnetic Adsorbent: Magnetic Activated Carbon/Chitosan (MACC) Nanocomposite. J. Mol. Liq. 2017, 240, 589–596. DOI: 1016/j.molliq.2017.05.131.
  • Khenniche, L.; Aissani, F. Preparation and Characterization of Carbons from Coffee Residue: Adsorption of Salicylic Acid on the Prepared Carbons. J. Chem. Eng. Data. 2010, 55, 728–734. DOI: 10.1021/je900426a.
  • Anyika, C.; Asri, N. A. M.; Majid, Z. A.; Yahya, A.; Jaafar, J. Synthesis and Characterization of Magnetic Activated Carbon Developed from Palm Kernel Shells. Nanotechnol. Environ. Eng. 2017, 2, 16. DOI: 10.1007/s41204-017-0027-6.
  • Mao, H.; Liu, X.; Yang, J.; Li, B.; Yao, C.; Kong, Y. Synthesis of Magnetic FexOy@Silica-Pillared Clay (SPC) Composites via a Novel Sol–Gel Route for Controlled Drug Release and Targeting. Mater. Sci. Eng. C. 2014, 40, 102–108. DOI: 10.1016/j.msec.2014.03.040.
  • Oh, W. D.; Lua, S. K.; Dong, Z.; Lim, T. T. Performance of Magnetic Activated Carbon Composite as Peroxymonosulfate Activator and Regenerable Adsorbent via Sulfate Radical-Mediated Oxidation Processes. J. Hazard. Mater. 2015, 284, 1–9. DOI: 10.1016/j.jhazmat.2014.10.042.
  • Gélinas, V.; Vidal, D. Determination of Particle Shape Distribution of Clay Using an Automated AFM Image Analysis Method. Powder Technol. 2010, 203, 254–264. DOI: 10.1016/j.powtec.2010.05.016.
  • Chen, G.; Shi, L. Removal of Cd(ii) and Pb(ii) Ions from Natural Water Using a Low-Cost Synthetic Mineral: Behavior and Mechanisms. RSC Adv. 2017, 7, 43445–43454. DOI: 10.1039/C7RA08018B.
  • Lu, Y.; He, D.; Lei, H.; Hu, J.; Huang, H.; Ren, H. Adsorption of Cu (II) and Ni (II) from Aqueous Solutions by Taro Stalks Chemically Modified with Diethylenetriamine. Environ. Sci. Pollut. Res. 2018, 25, 17425–17433. DOI: 10.1007/s11356-018-1932-3.
  • Tan, P.; Sun, J.; Hu, Y.; Fang, Z.; Bi, Q.; Chen, Y.; Cheng, J. Adsorption of Cu2+, Cd2+ and Ni2+ from Aqueous Single Metal Solutions on Graphene Oxide Membranes. J. Hazard. Mater. 2015, 297, 251–260. DOI: 10.1016/j.jhazmat.2015.04.068.
  • Gil, A.; Taoufik, N.; García, A. M.; Korili, S. A. Comparative Removal of Emerging Contaminants from Aqueous Solution by Adsorption on an Activated Carbon. Environ. Technol. 2018. DOI: 10.1080/09593330.2018.1464066.
  • Bernards, S. S.; Pennington, K. P.; Harrell, M. I.; Agnew, K. J.; Garcia, R. L.; Norquist, B. M.; Swisher, E. M. Clinical Characteristics and Outcomes of Patients with BRCA1 or RAD51C Methylated versus Mutated Ovarian Carcinoma. Gynecol. Oncol. 2018, 148, 281–285. DOI: 10.1016/j.ygyno.2017.12.004.
  • Chen, J.; Feng, J.; Yan, W. Influence of Metal Oxides on the Adsorption Characteristics of PPy/Metal Oxides for Methylene Blue. J. Colloid Interf. Sci. 2016, 475, 26–35. DOI: 10.1016/j.jcis.2016.04.017.
  • Sounthararajah, D. P.; Loganathan, P.; Kandasamy, J.; Vigneswaran, S. Adsorptive Removal of Heavy Metals from Water Using Sodium Titanate Nanofibres Loaded onto GAC in Fixed-Bed Columns. J. Hazard. Mater. 2015, 287, 306–316. DOI: 10.1016/j.jhazmat.2015.01.067.
  • Azari, A.; Kakavandi, B.; Kalantary, R. R.; Ahmadi, E.; Gholami, M.; Torkshavand, Z.; Azizi, M. Rapid and Efficient Magnetically Removal of Heavy Metals by Magnetite-Activated Carbon Composite: A Statistical Design Approach. J. Porous Mater. 2015, 22, 1083–1096. DOI: 10.1007/s10934-015-9983-z.
  • Kakavandi, B.; Kalantary Roshanak, R.; Jafari Ahmad, J.; Nasseri, S.; Ameri, A.; Esrafili, A.; Azari, A. ) Pb(II) Adsorption onto a Magnetic Composite of Activated Carbon and Superparamagnetic Fe3O4 Nanoparticles: Experimental and Modeling Study. CLEAN Soil. Air. Water. 2015, 43, 1157–1166. DOI: 10.1002/clen.201400568.
  • Jafari, K. A.; Baghdadi, M.; Pardakhti, A. Removal of Cadmium and Lead from Aqueous Solutions by Magnetic Acid-Treated Activated Carbon Nanocomposite. Desalin. Water Treat. 2016, 57, 18782–18798. DOI: 10.1080/19443994.2015.1095123.
  • Potgieter, J. H.; Potgieter-Vermaak, S. S.; Kalibantonga, P. D. Heavy Metals Removal from Solution by Palygorskite Clay. Miner. Eng. 2006, 19, 463–470. DOI: 10.1016/j.mineng.2005.07.004.
  • Veli, S.; Alyüz, B. Adsorption of Copper and Zinc from Aqueous Solutions by Using Natural Clay. J. Hazard. Mater. 2007, 149, 226–233. DOI: 10.1016/j.jhazmat.2007.04.109.
  • Mittal, A.; Ahmad, R.; Hasan, I. Biosorption of Pb2+, Ni2+ and Cu2+ Ions from Aqueous Solutions by L-Cystein-Modified Montmorillonite-Immobilized Alginate Nanocomposite. Desalin. Water Treat. 2016, 57, 17790–17807. DOI: 10.1080/19443994.2015.1086900.
  • Gopalakannan, V.; Periyasamy, S.; Viswanathan, N. Fabrication of Magnetic Particles Reinforced Nano-Hydroxyapatite/Gelatin Composite for Selective Cr(vi) Removal from Water. Environ. Sci: Water Res. Technol. 2018, 4, 783–794. DOI: 10.1039/C8EW00027A.
  • Regti, A.; Laamari, M. R.; Stiriba, S. E.; El Haddad, M. Potential Use of Activated Carbon Derived from Persea Species under Alkaline Conditions for Removing Cationic Dye from Wastewaters. J Assoc. Arab Univer. Basic Appl. Sci. 2017, 24, 10–18. DOI: 10.1016/j.jaubas.2017.01.003.
  • Senthil, K. P.; Ramalingam, S.; Abhinaya, R. V.; Kirupha, S. D.; Murugesan, A.; Sivanesan, S. Adsorption of Metal Ions onto the Chemically Modified Agricultural Waste. CLEAN Soil. Air. Water. 2011, 40, 188–197. DOI: 10.1002/clen.201100118.
  • Narasimha Rao, C.; Subbarayudu, K.; Vijaya, Y.; Venkata Subbaiah, M. Adsorption of Ni(II) from Aqueous Solution by Activated Carbons Derived from Tobacco Stem. Desalin. Water Treat. 2015, 54, 3392–3399. DOI: 10.1080/19443994.2014.910837.
  • Zhang, X.; Hao, Y.; Wang, X.; Chen, Z. Adsorption of Iron(III), Cobalt(II), and Nickel(II) on Activated Carbon Derived from Xanthoceras Sorbifolia Bunge Hull: Mechanisms, Kinetics and Influencing Parameters. Water Sci. Technol. 2017, 75, 1849. DOI: 10.2166/wst.2017.067.
  • Repo, E.; Warchol, J. K.; Kurniawan, T. A.; Sillanpää, M. E. T. Adsorption of Co(II) and Ni(II) by EDTA- and/or DTPA-Modified Chitosan: Kinetic and Equilibrium Modeling. Chem. Eng. J. 2010, 161, 73–82. DOI: 10.1016/j.cej.2010.04.030.
  • Zhang, Y.; Yang, X.; Zhou, H.-C. Direct Synthesis of Functionalized PCN-333 via Linker Design for Fe3+ Detection in Aqueous Media. Dalton Trans. 2018, 47, 11806–11811. DOI: 10.1039/C8DT01508B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.