108
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Removal of Cr(VI) from aqueous solutions using EDCC-MCM-41: Isotherm, kinetics and thermodynamic evaluation

ORCID Icon, , &
Pages 1827-1841 | Received 11 Aug 2018, Accepted 20 Oct 2018, Published online: 18 Feb 2019

References

  • Muthukrishnan, M.; Guha, B. K. Effect of pH on Rejection of Hexavalent Chromium by Nanofiltration. Desalination 2008, 219, 171–178. DOI:10.1016/j.desal.2007.04.054
  • Weng, C.-H.; Lin, Y.-T.; Lin, T. Y.; Kao, C. M. Enhancement of Electrokinetic Remediation of hyper-Cr(VI) Contaminated Clay by Zero-Valent Iron. J. Hazard. Mater. 2007, 149, 292–302. DOI:10.1016/j.jhazmat.2007.03.076
  • Nityanandi, D.; Subbhuraam, C. V. Kinetics and Thermodynamic of Adsorption of Chromium(VI) from Aqueous Solution Using Puresorbe. J. Hazard. Mater. 2009, 170, 876–882. DOI:10.1016/j.jhazmat.2009.05.049
  • Marjanović, V.; Lazarević, S.; Janković-Častvan, I.; Potkonjak, B.; Janaćković, Đ.; Petrović, R. Chromium (VI) Removal from Aqueous Solutions Using Mercaptosilane Functionalized Sepiolites. Chem. Eng. J. 2011, 166, 198–206. DOI:10.1016/j.cej.2010.10.062
  • Costa, M. Potential Hazards of Hexavalent Chromate in Our Drinking Water. Toxicol. Appl. Pharmacol. 2003, 188, 1–5. DOI:10.1016/S0041-008X(03)00011-5
  • Stearns, D. M.; Silveira, S. M.; Wolf, K. K.; Luke, A. M. Chromium(III) Tris(picolinate) Is Mutagenic at the Hypoxanthine (guanine) Phosphoribosyltransferase Locus in Chinese Hamster Ovary Cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen 2002, 513, 135–142. DOI:10.1016/S1383-5718(01)00301-1
  • Kareus, S. A.; Kelley, C.; Walton, H. S.; Sinclair, P. R. Release of Cr(III) from Cr(III) Picolinate upon Metabolic Activation. J. Hazard. Mater. 2001, 84, 163–174. DOI:10.1016/S0304-3894(01)00199-6
  • Indian Standards, I. IS:2490-(Pt.3)-1985. Indian standard tolerance limits for industrial effluents. Pt.3: tanning industry; Indian Standards Institution: New Delhi, 1985.
  • Namasivayam, C.; Yamuna, R. T. Adsorption of Chromium (VI) by a Low-Cost Adsorbent: Biogas Residual Slurry. Chemosphere 1995, 30, 561–578. DOI:10.1016/0045-6535(94)00418-T
  • Schmuhl, R.; Krieg, H.; Keizer, K. Adsorption of Cu(II) and Cr(VI) Ions by Chitosan: Kinetics and Equilibrium Studies. Water SA. 2001, 27, 1–7. http://dx.doi.org/10.4314/wsa.v27i1.5002.
  • Das, D. P.; Parida, K.; De, B. R. Photocatalytic Reduction of Hexavalent Chromium in Aqueous Solution over Titania Pillared Zirconium Phosphate and Titanium Phosphate under Solar Radiation. J. Mol. Catal. 2006, 245, 217–224. DOI:10.1016/j.molcata.2005.10.001
  • Sharma, A.; Bhattacharyya, K. G. Adsorption of Chromium (VI) on Azadirachta Indica (Neem) Leaf Powder. Adsorption 2005, 10, 327–338. DOI:10.1007/s10450-005-4818-x
  • Anirudhan, T. S.; Nima, J.; Divya, P. L. Adsorption of Chromium(VI) from Aqueous Solutions by Glycidylmethacrylate-Grafted-Densified Cellulose with Quaternary Ammonium Groups. Appl. Surf. Sci. 2013, 279, 441–449. DOI:10.1016/j.apsusc.2013.04.134
  • Dinari, M.; Soltani, R.; Mohammadnezhad, G. Kinetics and Thermodynamic Study on Novel Modified–Mesoporous Silica MCM-41/Polymer Matrix Nanocomposites: Effective Adsorbents for Trace CrVI Removal. J. Chem. Eng. Data 2017, 62, 2316–2329. DOI:10.1021/acs.jced.7b00197
  • Šćiban, M.; Klašnja, M.; Škrbić, B. Adsorption of Copper Ions from Water by Modified Agricultural by-Products. Desalination 2008, 229, 170–180. DOI:10.1016/j.desal.2007.08.017
  • Affandi, S.; Setyawan, H.; Winardi, S.; Purwanto, A.; Balgis, R. A Facile Method for Production of High-Purity Silica Xerogels from Bagasse Ash. Adv. Powder Technol. 2009, 20, 468–472. DOI:10.1016/j.apt.2009.03.008
  • Sierra, I.; Perez-Quintanilla, D. Heavy Metal Complexation on Hybrid Mesoporous Silicas: An Approach to Analytical Applications. Chem. Soc. Rev. 2013, 42, 3792–3807. DOI:10.1039/C2CS35221D
  • Chaudhuri, H.; Dash, S.; Sarkar, A. Single-Step Room-Temperature in Situ Syntheses of Sulfonic Acid Functionalized SBA-16 with Ordered Large Pores: Potential Applications in Dye Adsorption and Heterogeneous Catalysis. Ind. Eng. Chem. Res. 2017, 56, 2943–2957. DOI:10.1021/acs.iecr.6b04162
  • Chaudhuri, H.; Dash, S.; Sarkar, A. Fabrication of New Synthetic Routes for Functionalized Si-MCM-41 Materials as Effective Adsorbents for Water Remediation. Ind. Eng. Chem. Res. 2016, 55, 10084–10094. DOI:10.1021/acs.iecr.6b02241
  • Purnomo, C. W.; Salim, C.; Hinode, H. Synthesis of Pure Na–X and Na–a Zeolite from Bagasse Fly Ash. Microporous Mesoporous Mater. 2012, 162, 6–13. DOI:10.1016/j.micromeso.2012.06.007
  • Nazriati, N.; Setyawan, H.; Affandi, S.; Yuwana, M.; Winardi, S. Using Bagasse Ash as a Silica Source When Preparing Silica Aerogels via Ambient Pressure Drying. J. Non Cryst. Solids 2014, 400, 6–11. DOI:10.1016/j.jnoncrysol.2014.04.027
  • Xu, X.; Yang, W.; Liu, J.; Lin, L. Synthesis of NaA Zeolite Membrane by Microwave Heating. Sep. Purif. Technol. 2001, 25, 241–249. DOI:10.1016/S1383-5866(01)00108-3
  • Natàlia, M.; Xavier, Q.; Angel, L. S.; José, M. A.; Maria, J.; Henk, N.; Mark, T.; Kenneth, S. Determining Suitability of a Fly Ash for Silica Extraction and Zeolite Synthesis. J. Chem. Technol. Biotechnol. 2004, 79, 1009–1018. DOI:10.1002/jctb.1088.
  • Ma, Y.; Chen, H.; Shi, Y.; Yuan, S. Low Cost Synthesis of Mesoporous Molecular Sieve MCM-41 from Wheat Straw Ash Using CTAB as Surfactant. Mater. Res. Bull. 2016, 77, 258–264. DOI:10.1016/j.materresbull.2016.01.052
  • Chen, X.; Ching, W. K.; Lam, K. F.; Wei, W.; Yeung, K. L. An Investigation of the Selective Adsorptions of Metals on Mesoporous NH2-MCM-41. J. Phys. Chem. C 2016, 120, 18365–18376. DOI:10.1021/acs.jpcc.6b03480
  • Shahbazi, A.; Younesi, H.; Badiei, A. Functionalized SBA-15 Mesoporous Silica by Melamine-Based Dendrimer Amines for Adsorptive Characteristics of Pb(II), Cu(II) and Cd(II) Heavy Metal Ions in Batch and Fixed Bed Column. Chem. Eng. J. 2011, 168, 505–518. DOI:10.1016/j.cej.2010.11.053
  • Ren, Z.; Kong, D.; Wang, K.; Zhang, W. Preparation and Adsorption Characteristics of an Imprinted Polymer for Selective Removal of Cr(vi) Ions from Aqueous Solutions. J. Mater. Chem. A 2014, 2, 17952–17961. DOI:10.1039/C4TA03024A
  • Noh, J. S.; Schwarz, J. A. Estimation of the Point of Zero Charge of Simple Oxides by Mass Titration. J. Colloid Interface Sci. 1989, 130, 157–164. DOI:10.1016/0021-9797(89)90086-6
  • Fu, P.; Yang, T.; Feng, J.; Yang, H. Synthesis of Mesoporous Silica MCM-41 Using Sodium Silicate Derived from Copper Ore Tailings with an Alkaline Molted-Salt Method. J. Ind. Eng. Chem. 2015, 29, 338–343. DOI:10.1016/j.jiec.2015.04.012
  • Yang, H.; Deng, Y.; Du, C.; Jin, S. Novel Synthesis of Ordered Mesoporous Materials Al-MCM-41 from Bentonite. Appl. Clay Sci. 2010, 47, 351–355. DOI:10.1016/j.clay.2009.11.050
  • Chen, F.; Hong, M.; You, W.; Li, C.; Yu, Y. Simultaneous Efficient Adsorption of Pb2+ and MnO4− Ions by MCM-41 Functionalized with Amine and Nitrilotriacetic Acid Anhydride. Appl. Surf. Sci. 2015, 357, 856–865. DOI:10.1016/j.apsusc.2015.09.069
  • Wu, Y.; Jin, Y.; Cao, J.; Yilihan, P.; Wen, Y.; Zhou, J. Optimizing Adsorption of Arsenic(III) by NH2-MCM-41 Using Response Surface Methodology. J. Ind. Eng. Chem. 2014, 20, 2792–2800. DOI:10.1016/j.jiec.2013.11.009
  • Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered Mesoporous Molecular Sieves Synthesized by a Liquid-Crystal Template Mechanism. Nature 1992, 359,710. 10–1038. DOI:10.1038/359710a0
  • McCusker, L. B. IUPAC Nomenclature for Ordered Microporous and Mesoporous Materials and Its Application to Non-Zeolite Microporous Mineral Phases. Rev. Mineral. Geochem. 2005, 57, 1–16. DOI:10.2138/rmg.2005.57.1
  • Shukla, A.; Zhang, Y.-H.; Dubey, P.; Margrave, J. L.; Shukla, S. S. The Role of Sawdust in the Removal of Unwanted Materials from Water. J. Hazard. Mater. 2002, 95, 137–152. DOI:10.1016/S0304-3894(02)00089-4
  • Li, X.; Li, Y.; Ye, Z. Preparation of Macroporous Bead Adsorbents Based on Poly(vinyl Alcohol)/Chitosan and Their Adsorption Properties for Heavy Metals from Aqueous Solution. Chem. Eng. J. 2011, 178, 60–68. DOI:10.1016/j.cej.2011.10.012
  • Wu, Y.; Mi, X.; Jiang, L.; Li, B.; Feng, S. Equilibrium, Kinetics and Thermodynamics Study on Biosorption of Cr(VI) by Fresh Biomass of Saccharomyces cerevisiae. Korean J. Chem. Eng. 2011, 28, 895–901. DOI:10.1007/s11814-010-0429-7
  • Elmoubarki, R.; Mahjoubi, F. Z.; Tounsadi, H.; Moustadraf, J.; Abdennouri, M.; Zouhri, A.; El Albani, A.; Barka, N. Adsorption of Textile Dyes on Raw and Decanted Moroccan Clays: Kinetics, Equilibrium and Thermodynamics. Water Resour. Ind. 2015, 9, 16–29. DOI:10.1016/j.wri.2014.11.001
  • von Oepen, B.; Kördel, W.; Klein, W. Sorption of Nonpolar and Polar Compounds to Soils: Processes, Measurements and Experience with the Applicability of the Modified OECD-Guideline 106. Chemosphere 1991, 22, 285–304. DOI:10.1016/0045-6535(91)90318-8
  • Ahmad, R.; Kumar, R. Adsorptive Removal of Congo Red Dye from Aqueous Solution Using Bael Shell Carbon. Appl. Surf. Sci. 2010, 257, 1628–1633. DOI:10.1016/j.apsusc.2010.08.111
  • Foo, K. Y.; Hameed, B. H. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156, 2–10. DOI:10.1016/j.cej.2009.09.013
  • Jossens, L.; Prausnitz, J. M.; Fritz, W.; Schlünder, E. U.; Myers, A. L. Thermodynamics of Multi-Solute Adsorption from Dilute Aqueous Solutions. Chem. Eng. Sci. 1978, 33, 1097–1106. DOI:10.1016/0009-2509(78)85015-5
  • Karaca, H.; Altıntığ, E.; Türker, D.; Teker, M. An Evaluation of Coal Fly Ash as an Adsorbent for the Removal of Methylene Blue from Aqueous Solutions: kinetic and Thermodynamic Studies. J. Disper. Sci. Technol. 2018, 39, 1–8. DOI:10.1080/01932691.2018.1462191.
  • Jin, L.; He, D.; Wei; M. Selective Adsorption of Phenol and Nitrobenzene by β‐Cyclodextrin‐Intercalated Layered Double Hydroxide: Equilibrium and Kinetic Study. Chem. Eng. Technol. 2011, 34, 1559–1566. DOI:10.1002/ceat.201000319.
  • Mirzaee, S. S.; Salahi, E.; Khanlarkhani, A. Kinetics, Isotherms and Thermodynamic Modeling of Mn2+ and Zn2+ Single and Binary Removal Using Mercapto Functionalized Silica Aerogel. J. Disper. Sci. Technol. 2018, 1–11. DOI:10.1080/01932691.2018.1478301
  • Tailor, R.; Shah, B.; Shah, A. Sorptive Removal of Phenol by Zeolitic Bagasse Fly Ash: Equilibrium, Kinetics, and Column Studies. J. Chem. Eng. Data. 2012, 57, 1437–1448. DOI:10.1021/je300399y
  • Kafshgari, M. H.; Mansouri, M.; Khorram, M.; Kashani, S. R. Kinetic Modeling: A Predictive Tool for the Adsorption of Zinc Ions onto Calcium Alginate Beads. Int. J. Ind. Chem. 2013, 4, 5. DOI:10.1186/2228-5547-4-5
  • Cheung, W. H.; Szeto, Y. S.; McKay, G. Intraparticle Diffusion Processes during Acid Dye Adsorption onto Chitosan. Bioresour. Technol. 2007, 98, 2897–2904. DOI:10.1016/j.biortech.2006.09.045
  • Shah, B. A.; Mistry, C. B.; Shah, A. V. Sequestration of Cu(II) and Ni(II) from Wastewater by Synthesized Zeolitic Materials: Equilibrium, Kinetics and Column Dynamics. Chem. Eng. J. 2013, 220, 172–184. DOI:10.1016/j.cej.2013.01.056

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.