495
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Stability and thermal conductivity enhancement of aqueous nanofluid based on surfactant-modified TiO2

ORCID Icon, , , , , & show all
Pages 374-382 | Received 13 Nov 2018, Accepted 27 Jan 2019, Published online: 12 Mar 2019

References

  • Fuskele, V.; Sarviya, R. M. Recent Developments in Nanoparticles Synthesis, Preparation and Stability of Nanofluids. Mater. Today: Proc. 2017, 4, 4049–4060. DOI: 10.1016/j.matpr.2017.02.307.
  • Sidik, N. A. C.; Jamil, M. M.; Aziz Japar, W. M. A.; Adamu, I. M. A Review on Preparation Methods, stability and Applications of Hybrid Nanofluids. Renew. Sustain. Energy Rev. 2017, 80, 1112–1122. DOI: 10.1016/j.rser.2017.05.221.
  • Kumar, D. D.; Arasu, A. V. A Comprehensive Review of Preparation, Characterization, properties and Stability of Hybrid Nanofluids. Renew. Sustain. Energy Rev. 2018, 81, 1669–1689. DOI: 10.1016/j.rser.2017.05.257.
  • Babita, Sharma, S. K.; Gupta, S. M. Preparation and Evaluation of Stable Nanofluids for Heat Transfer Application: A Review. Exp. Therm. Fluid Sci. 2016, 79, 202–212. DOI: 10.1016/j.expthermflusci.2016.06.029.
  • Ahmadi, M. H.; Mirlohi, A.; Alhuyi Nazari, M.; Ghasempour, R. A Review of Thermal Conductivity of Various Nanofluids. J. Mol. Liq. 2018, 265, 181–188. DOI: 10.1016/j.molliq.2018.05.124.
  • Philip, J.; Shima, P. D. Thermal Properties of Nanofluids. Adv. Colloid Interface Sci. 2012, 183–184, 30–45. DOI: 10.1016/j.cis.2012.08.001.
  • Ghadimi, A.; Saidur, R.; Metselaar, H. S. C. A Review of Nanofluid Stability Properties and Characterization in Stationary Conditions. Int. J. Heat Mass Transf. 2011, 54, 4051–4068. DOI: 10.1016/j.ijheatmasstransfer.2011.04.014.
  • Habibzadeh, S.; Kazemi-Beydokhti, A.; Khodadadi, A. A.; Mortazavi, Y.; Omanovic, S.; Shariat-Niassar, M. Stability and Thermal Conductivity of Nanofluids of Tin Dioxide Synthesized via Microwave-Induced Combustion Route. Chem. Eng. J. 2010, 156, 471–478. DOI: 10.1016/j.cej.2009.11.007.
  • Nasiri, A.; Shariaty-Niasar, M.; Rashidi, A.; Amrollahi, A.; Khodafarin, R. Effect of Dispersion Method on Thermal Conductivity and Stability of Nanofluid. Exp. Therm. Fluid Sci. 2011, 35, 717–723. DOI: 10.1016/j.expthermflusci.2011.01.006.
  • Hwang, Y.; Lee, J. K.; Lee, C. H. G.; Jung, Y. M.; Cheong, S. I.; Lee, C. H. G.; Ku, B. C.; Jang, S. P. Stability and Thermal Conductivity Characteristics of Nanofluids. Thermochim. Acta. 2007, 455, 70–74. DOI: 10.1016/j.tca.2006.11.036.
  • Ghadimi, A.; Metselaar, I. H. The Influence of Surfactant and Ultrasonic Processing on Improvement of Stability, thermal Conductivity and Viscosity of Titania Nanofluid. Exp. Therm. Fluid Sci. 2013, 51, 1–9. DOI: 10.1016/j.expthermflusci.2013.06.001.
  • Shao, X.; Chen, Y.; Mo, S.; Cheng, Z.; Yin, T. Dispersion Stability of TiO2-H2O Nanofluids Containing Mixed Nanotubes and Nanosheets. Energy Procedia 2015, 7, 2049–2054. DOI: 10.1016/j.egypro.2015.07.282.
  • Xia, G.; Jiang, H.; Liu, R.; Zhai, Y. Effects of Surfactant on the Stability and Thermal Conductivity of Al2O3/de-ionized Water Nanofluids. Int. J. Therm. Sci. 2014, 84, 118–124. DOI: 10.1016/j.ijthermalsci.2014.05.004.
  • Wang, X.-J.; Li, H.; Li, X.-F.; Wang, Z.-F.; Lin, F. Stability of TiO2 and Al2O3 Nanofluids. Chinese Phys. Lett. 2011, 28, 086601. DOI: 10.1088/0256-307X/28/8/086601.
  • Shazali, S.; Rozali, S.; Amiri, A.; Zubir, M.; Sabri, M.; Zabri, M. Evaluation on Stability and Thermophysical Performances of Covalently Functionalized Graphene Nanoplatelets with Xylitol and Citric Acid. Mater. Chem. Phys. 2018, 212, 363–371. DOI: 10.1016/j.matchemphys.2018.03.040.
  • Shazali, S.; Amiri, A.; Mohd Zubir, M.; Rozali, S.; Zabri, M.; Mohd Sabri, M.; Soleymaniha, M. Investigation of the Thermophysical Properties and Stability Performance of Non-covalently Functionalized Graphene Nanoplatelets with Pluronic P-123 in Different Solvents. Mater. Chem. Phys. 2018, 206, 94–102. DOI: 10.1016/j.matchemphys.2017.12.008.
  • Li, Y.; Zhou, J.; Tung, S.; Schneider, E.; Xi, S. A Review on Development of Nanofluid Preparation and Characterization. Powder Technol. 2009, 196, 89–101. DOI: 10.1016/j.powtec.2009.07.025.
  • Kim, J.; Park, Y.-S.; Veriansyah, B.; Kim, J.; Lee, Y. Continuous Synthesis of Surface-Modified Metal Oxide Nanoparticles Using Supercritical Methanol for Highly Stabilized Nanofluid. Chem. Mater. 2008, 20, 6301–6303. DOI: 10.1021/cm8017314.
  • Kanniah, V.; Wang, B.; Yang, Y.; Grulke, E. A. Graphite Functionalization for Dispersion in a Two-Phase Lubricant Oligomer Mixture. J. Appl. Polym. Sci. 2012, 12, 165–174. DOI: 10.1002/app.35574.
  • Zeng, Y.; Zhong, X.; Liu, Z.; Chen, S.; Li, N. Preparation and Enhancement of Thermal Conductivity of Heat Transfer Oil-Based MoS2 Nanofluids. J. Nanomater. 2013, 2013, 1–6. DOI: 10.1155/2013/270490.
  • Qin, Z.-B.; Tan, L.; Liu, Z.-Q.; Chen, S.; Qin, J.-H.; Tang, J.-J.; Li, N. One-Pot Synthesis of Ultrafine TiO2 Nanoparticles with Enhanced Thermal Conductivity for Nanofluid Applications. Adv. Powder Technol. 2016, 27, 2–7. DOI: 10.1016/j.apt.2015.12.018.
  • Saleh, R.; Putra, N.; Wibowo, R. E.; Septiadi, W. N.; Prakoso, S. P. Titanium Dioxide Nanofluids for Heat Transfer Applications. Exp. Therm. Fluid Sci. 2014, 52, 19–29. DOI: 10.1016/j.expthermflusci.2013.08.018.
  • Duangthongsuk, W.; Wongwises, S. Measurement of Temperature-Dependent Thermal Conductivity and Viscosity of TiO2-water Nanofluids. Exp. Therm. Fluid Sci. 2009, 33, 706–714. DOI: 10.1016/j.expthermflusci.2009.01.005.
  • Das, P. K.; Mallik, A. K.; Ganguly, R.; Santra, A. K. Stability and Thermophysical Measurements of TiO2 (Anatase) Nanofluids with Different Surfactants. J. Mol. Liq. 2018, 254, 98–107. DOI: 10.1016/j.molliq.2018.01.075.
  • Leena, M.; Srinivasan, S. Synthesis and Ultrasonic Investigations of Titanium Oxide Nanofluids. J. Mol. Liq. 2015, 206, 103–109. DOI: 10.1016/j.molliq.2015.02.001.
  • Murshed, S. M. S.; Leong, K. C.; Yang, C. Enhanced Thermal Conductivity of TiO2 - Water Based Nanofluids. Int. J. Therm. Sci. 2005, 44, 367–373. DOI: 10.1016/j.ijthermalsci.2004.12.005.
  • Li, R.; Chen, G.; Dong, G.; Sun, X. Controllable Synthesis of Nanostructured TiO2 by CTAB-Assisted Hydrothermal Route. New J. Chem. 2014, 38, 4684–4689. DOI: 10.1039/C4NJ00299G.
  • Deka, B. K.; Maji, T. K. Effect of TiO2 and Nanoclay on the Properties of Wood Polymer Nanocomposite. Compos. Part A Appl. Sci. Manuf. 2011, 42, 2117–2125. DOI: 10.1016/j.compositesa.2011.09.023.
  • Huang, Y.; Zhou, Z.; Qi, Y.; Li, X.; Cheng, Z.; Yuan, W. Hierarchically Macro-/Mesoporous Structured Co-Mo-Ni/α-Al2O3 Catalyst for the Hydrodesulfurization of Thiophene. Chem. Eng. J. 2011, 172, 444–451. DOI: 10.1016/j.cej.2011.06.006.
  • Zolgharnein, J.; Bagtash, M.; Asanjarani, N. Hybrid Central Composite Design Approach for Simultaneous Optimization of Removal of Alizarin Red S and Indigo Carmine Dyes Using Cetyltrimethylammonium Bromide-modified TiO2 Nanoparticles. J. Environ. Chem. Eng. 2014, 2, 988–1000. DOI: 10.1016/j.jece.2014.03.017.
  • Mehta, S. K.; Chaudhary, S.; Gradzielski, M. Time Dependence of Nucleation and Growth of Silver Nanoparticles Generated by Sugar Reduction in Micellar Media. J. Colloid Interface Sci. 2010, 343, 447–453. DOI: 10.1016/j.jcis.2009.11.053.
  • Roy, K.; Mandal, S. K.; Alam, M. N.; Debnath, S. C. Impact of Surface Modification on the Properties of Sol–Gel Synthesized Nanotitanium Dioxide (TiO2)-Based Styrene Butadiene Rubber (SBR) Nanocomposites. J. Sol-Gel Sci. Technol. 2016, 77, 718–726. DOI: 10.1007/s10971-015-3904-0.
  • Qu, Y.; Wang, W.; Jing, L.; Song, S.; Shi, X.; Xue, L.; Fu, H. Surface Modification of Nanocrystalline Anatase with CTAB in the Acidic Condition and Its Effects on Photocatalytic Activity and Preferential Growth of TiO2. Appl. Surf. Sci. 2010, 257, 151–156. DOI: 10.1016/j.apsusc.2010.06.054.
  • Songolzadeh, R.; Moghadasi, J. Stabilizing Silica Nanoparticles in High Saline Water by Using Ionic Surfactants for Wettability Alteration Application. Colloid Polym. Sci. 2017, 295, 145–155. DOI: 10.1007/s00396-016-3987-3.
  • Mitra, A.; Bhaumik, A.; Paul, B. K. Synthesis and Characterization of Mesoporous Titanium Dioxide Using Self-Assembly of Sodium Dodecyl Sulfate and Benzyl Alcohol Systems as Templates. Microporous Mesoporous Mater. 2008, 109, 66–72. DOI: 10.1016/j.micromeso.2007.04.052.
  • Jiang, L.; Gao, L.; Sun, J. Production of Aqueous Colloidal Dispersions of Carbon Nanotubes. J. Colloid Interface Sci. 2003, 260, 89–94. DOI: 10.1016/S0021-9797(02)00176-5.
  • Lee, K.; Hwang, Y.; Cheong, S.; Kwon, L.; Kim, S.; Lee, J. Performance Evaluation of Nano-lubricants of Fullerene Nanoparticles in Refrigeration Mineral Oil. Curr. Appl. Phys. 2009, 9, 128–132. DOI: 10.1016/j.cap.2008.12.054.
  • Sadeghi, R.; Etemad, S. G.; Keshavarzi, E.; Haghshenasfard, M. Investigation of Alumina Nanofluid Stability by UV–Vis Spectrum. Microfluid. Nanofluid. 2015, 18, 1023–1030. DOI: 10.1007/s10404-014-1491-y.
  • Batmunkh, M.; Tanshen, M. R.; Nine, M. J.; Myekhlai, M.; Choi, H.; Chung, H.; Jeong, H. Thermal Conductivity of TiO2 Nanoparticles Based Aqueous Nanofluids with an Addition of a Modified Silver Particle. Ind. Eng. Chem. Res. 2014, 53, 8445–8451. DOI: 10.1021/ie403712f.
  • Singh, R. K.; Sharma, A. K.; Dixit, A. R.; Mandal, A.; Tiwari, A. K. Experimental Investigation of Thermal Conductivity and Specific Heat of Nanoparticles Mixed Cutting Fluids. Mater. Today Proc. 2017, 4, 8587–8596. DOI: 10.1016/j.matpr.2017.07.206.
  • Setia, H.; Gupta, R.; Wanchoo, R. K. Thermophysical Properties of TiO2-Water Based Nanofluids. AIP Conf. Proc. 2011, 1393, 267–268. DOI: 10.1063/1.3653712.
  • Qi, C.; Wan, Y.; Liang, L.; Rao, Z.; Li, Y. Numerical and Experimental Investigation into the Effects of Nanoparticle Mass Fraction and Bubble Size on Boiling Heat Transfer of TiO2–Water Nanofluid. J. Heat Transfer. 2016, 138, 081503. DOI: 10.1115/1.4033353.
  • Oliveira, L. R.; Silva, A. C. A.; Dantas, N. O.; Bandarra Filho, E. P. Thermophysical Properties of TiO2-PVA/Water Nanofluids. Int. J. Heat Mass Transf. 2017, 115, 795–808. DOI: 10.1016/j.ijheatmasstransfer.2017.07.094.
  • Wang, S.; Li, Y.; Zhang, H.; Lin, Y.; Li, Z.; Wang, W.; Wu, Q.; Qian, Y.; Hong, H.; Zhi, C. Enhancement of Thermal Conductivity in Water-Based Nanofluids Employing TiO2/Reduced Graphene Oxide Composites. J. Mater. Sci. 2016, 51, 10104–10115. DOI: 10.1007/s10853-016-0239-3.
  • Keblinski, P.; Phillpot, S. R.; Choi, S. U. S.; Eastman, J. A. Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids). Int. J. Heat Mass Transf. 2002, 45, 855–863. DOI: 10.1016/S0017-9310(01)00175-2.
  • Martínez, V. A.; Vasco, D. A.; García-Herrera, C. M. Transient Measurement of the Thermal Conductivity as a Tool for the Evaluation of the Stability of Nanofluids Subjected to a Pressure Treatment. Int. Commun. Heat Mass Transf. 2018, 91, 234–238. DOI: 10.1016/j.icheatmasstransfer.2017.12.016.
  • Kundan, L.; Mallick, S. S.; Pal, B. Effect of Time Dependent Nanoclusters Morphology on the Thermal Conductivity and Heat Transport Mechanism of TiO2 Based Nanofluid. Heat Mass Transfer 2017, 53, 1873–1892. DOI: 10.1007/s00231-016-1945-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.