172
Views
6
CrossRef citations to date
0
Altmetric
Original Articles

Electrochemical sensor based on Ni/reduced graphene oxide nanohybrids for selective detection of ascorbic acid

, , , &
Pages 1516-1522 | Received 17 Apr 2018, Accepted 27 May 2018, Published online: 04 Apr 2019

References

  • Li, Q.; Huo, C.; Yi, K.; Zhou, L.; Su, L.; Hou, X. Preparation of Flake Hexagonal BN and Its Application in Electrochemical Detection of Ascorbic Acid; dopamine and Uric Acid. Sens. Actuators B. 2018, 260, 346–356. DOI: 10.1016/j.snb.2017.12.208.
  • Song, J.; Xu, L.; Xing, R. Q.; Li, Q. L.; Zhou, C. Y.; Liu, D. L.; Song, H. W. Synthesis of Au/Graphene Oxide Composites for Selective and Sensitive Electrochemical Detection of Ascorbic Acid. Sci. Rep. 2014, 4, 7515.
  • Abellán-Llobregat, A.; Vidal, L.; Rodríguez-Amaro, R.; Berenguer-Murcia, Á.; Canals, A.; Morallón, E. Au-IDA Microelectrodes Modified with Au-doped Graphene Oxide for the Simultaneous Determination of Uric Acid and Ascorbic Acid in Urine Samples. Electrochim. Acta. 2017, 227, 275–284. DOI: 10.1016/j.electacta.2016.12.132.
  • Shi, M.; Chen, Z.; Guo, L.; Liang, X.; Zhang, J.; He, C.; Wang, B.; Wu, Y. A Multiwalled Carbon Nanotube/tetra-bisoheptyloxyphthalocyanine Cobalt(II) composite with High Dispersibility for Electrochemical Detection of Ascorbic Acid. J. Mater. Chem. B. 2014, 2, 4876. DOI: 10.1039/C4TB00229F.
  • Kim, S-j.; Kim, Y. L.; Yu, A.; Lee, J.; Lee, S. C.; Lee, C.; Kim, M. H.; Lee, Y. Electrospun Iridium Oxide Nanofibers for Direct Selectiveelectrochemical Detection of Ascorbic Acid. Sens. Actuators B: Chem. 2014, 196, 480. DOI: 10.1016/j.snb.2014.02.032.
  • Xu, T.; Zhang, Q.; Zheng, J.; Lv, Z.; Wei, J.; Wang, A.; Feng, J. Simultaneous Determination of Dopamine and Uric Acid in the Presence of Ascorbic Acid Using Pt Nanoparticles Supported on Reduced Graphene Oxide. Electrochim. Acta. 2014, 115, 109–115. DOI: 10.1016/j.electacta.2013.10.147.
  • Wang, L.; Gong, C.; Shen, Y.; Ye, W.; Xu, M.; Song, Y. A Novel Ratiometric Electrochemical Biosensor for Sensitive Detection of Ascorbic Acid. Sens. Actuators B. 2017, 242, 625–631. DOI: 10.1016/j.snb.2016.11.100.
  • Zhang, X.; Yu, S.; He, W. Y.; Uyama, H.; Xie, Q. J.; Zhang, L.; Yang, F. C. Electrochemical Sensor Based on Carbon-supported NiCoO2 Nanoparticles for Selective Detection of Ascorbic Acid. Biosens. Bioelectr. 2014, 55, 446. DOI: 10.1016/j.bios.2013.12.046.
  • Wang, Y.; Rui, Y.; Li, F.; Li, M. Electrodeposition of Nickel Hexacyanoferrate/layered Double Hydroxide Hybrid Film on the Gold Electrode and Its Application in the Electroanalysis of Ascorbic Acid. Electrochim. Acta. 2014, 117, 398–404. DOI: 10.1016/j.electacta.2013.11.141.
  • Dalmasso, P. R.; Pedano, M. L.; Rivas, G. A. Electrochemical Determination of Ascorbic Acid and Paracetamol in Pharmaceutical Formulations Using a Glassy Carbon Electrode Modified with Multi-​Wall Carbon Nanotubes Dispersed in Polyhistidine. Sens. Actuators B: Chem. 2012, 173, 732. DOI: 10.1016/j.snb.2012.07.087.
  • Sun, C.-L.; Chang, C.-T.; Lee, H.-H.; Zhou, J. G.; Wang, J.; Sham, T.-K.; Pong, W.-F. Microwave-Assisted Synthesis of a Core–Shell MWCNT/GONR Heterostructure for the Electrochemical Detection of Ascorbic Acid; Dopamine; and Uric Acid. ACS Nano. 2011, 5, 7788. DOI: 10.1021/nn2015908.
  • Gai, P. B.; Zhang, H. J.; Zhang, Y. S.; Liu, W.; Zhu, G. B.; Zhang, X. H.; Chen, J. H. Simultaneous Electrochemical Detection of Ascorbic Acid; dopamine and Uric Acid Based on Nitrogen Doped Porous Carbon Nanopolyhedra. J. Mater. Chem. B. 2013, 1, 2742. DOI: 10.1039/c3tb20215a.
  • Yu, S. J.; Luo, C. H.; Wang, L. W.; Peng, H.; Zhu, Z. Q. Poly(3;​4-​Ethylenedioxythiophene)​-​Modified Ni​/Silicon Microchannel Plate Electrode for the Simultaneous Determination of Ascorbic Acid; dopamine and Uric Acid. Analyst. 2013, 138, 1149. DOI: 10.1039/c2an36335f.
  • Ammam, M. Electrochemical and Electrophoretic Deposition of Enzymes: principles, differences and application in miniaturized biosensor and biofuel cell electrodes. Biosens. Bioelectron. 2014, 58, 121 DOI: 10.1016/j.bios.2014.02.030.
  • Wang, X.; Piro, B.; Reisberg, S.; Anquetin, G.; de Rocquigny, H.; Jiang, P.; Wang, Q.; Wu, W.; Pham, M.-C.; Dong, C.-Z. Direct, reagentless electrochemical detection of the BIR3 domain of X-linked inhibitor of apoptosis protein using a peptide-based conducting polymer sensor. Biosens. Bioelectron. 2014, 61, 57 DOI: 10.1016/j.bios.2014.04.047.
  • Vuong, Q. L.; Berret, J.-F.; Fresnais, J.; Gossuin, Y.; Sandre, O. A Universal Scaling Law to Predict the Efficiency of Magnetic Nanoparticles as MRI T2-​Contrast Agents. Adv. Health. Mater. 2012, 1, 502. DOI: 10.1002/adhm.201200078.
  • Melita, M.; Zacharoula, I.; Ioannis, T.; Katerina, V.; Catherine, D.-S.; Georgios, B. Magnetic Colloidal Superparticles of Co; Mn and Ni Ferrite Featured with Comb-type and/or Linear Amphiphilic Polyelectrolytes; NMR and MRI Relaxometry. Dalton Trans. 2015, 44, 10980. DOI: 10.1039/c5dt00372e.
  • Tian, Y.; Liu, Y. X.; Pang, F.; Wang, F. L.; Zhang, X. Green Synthesis of Nanostructed Ni-​Reduced Graphene Oxide Hybrids and Their Application for Catalytic Reduction of 4-​Nitrophenol. Colloids Surf. A: Physicochem. Eng. Asp. 2015, 464, 96. DOI: 10.1016/j.colsurfa.2014.10.027.
  • Klochko, N. P.; Klepikova, K. S.; Tyukhov, I. I.; Myagchenko, Y. O.; Melnychuk, E. E.; Kopach, V. R.; Khrypunov, G. S.; Lyubov, V. M.; Kopach, A. V.; Starikov, V. V.; Kirichenko, M. V. Zinc Oxide-​Nickel Cermet Selective Coatings Obtained by Sequential Electrodeposition. Solar Energy 2015, 117, 1. DOI: 10.1016/j.solener.2015.03.047.
  • P.; M.; Gengatharan, M.; Rajaram, K.; K.; Ramaswamy, V. Balasubramanian, Selective Hydrogenation of Cinnamaldehyde on Nickel Nanoparticles Supported on Titania: role of Catalyst Preparation Methods. Catal. Sci. & Technol. 2015, 5, 3313. DOI: 10.1039/C4CY01379D.
  • Zhao, B.; Chen, Z.; Yan, X.; Ma, X.; Hao, Q. CO Methanation over Ni/SiO2 Catalyst Prepared by Ammonia Impregnation and Plasma Decomposition. Top. Catal. 2017, 60, 879. DOI: 10.1007/s11244-017-0752-x.
  • Kurlyandskaya, G. V.; Safronov, A. P.; Bhagat, S. M.; Lofland, S. E.; Beketov, I. V.; Marcano, P. L. Tailoring Functional Properties of Ni NPs-​Acrylic Copolymer Composites with Different Concentrations of Magnetic Filler. J. Appl. Phys. (Melville; NY; US) 2015, 117, 123917/1. DOI: 10.1063/1.4916700.
  • Wang, S. F.; Xie, F.; Hu, R. F. Electrochemical Study of Brucine on an Electrode Modified with Magnetic Carbon-​Coated Nickel Nanoparticles. Anal. Bioanal. Chem. 2007, 387, 933. DOI: 10.1007/s00216-006-0984-2.
  • Feng, J.; Zhang, C. P. Preparation of Cu-​Ni Alloy Nanocrystallites in Water-​in-​Oil Microemulsions. J. Colloid Interface Sci. 2006, 293, 414. DOI: 10.1016/j.jcis.2005.06.071.
  • Wang, H.; Zhang, S.; Li, S.; Qu, J. Electrochemical Sensor Based on Palladium-reduced Graphene oxide modified with gold nanoparticles for simultaneous determination of acetaminophen and 4-aminophenol. Talanta. 2018, 178, 188–194. DOI: 10.1016/j.talanta.2017.09.021.
  • Ejaz, A.; Joo, Y.; Jeon, S. Fabrication of 1;4-bis(aminomethyl)benzene and Cobalt Hydroxide @graphene Oxide for Selective Detection of Dopamine in the Presence of Ascorbic Acid and Serotonin. Sens. Actuators B. 2017, 240, 297–307. DOI: 10.1016/j.snb.2016.08.171.
  • Li, Y.; Gao, W.; Ci, L.; Wang, C.; Ajayan, P. M. Catalytic Performance of Pt Nanopar-ticles on Reduced Graphene Oxide for Methanol Electro-Oxidation. Carbon. 2010, 48, 1124. DOI: 10.1016/j.carbon.2009.11.034.
  • Liang, Y.; Wang, H.; Zhou, J.; Li, Y.; Wang, J.; Regier, T.; Dai, H. Covalent Hybrid of Spinel Manganese–cobalt Oxide and Graphene as Advanced Oxygen Reductionelectrocatalysts. J. Am. Chem. Soc. 2012, 134, 3517. DOI: 10.1021/ja210924t.
  • Mani1, V.; Devasenathipathyl, R.; Chen, S.-M.; Kohilarani, K.; Ramachandran, R. Asensitive Amperometric Sensor for the Determination of Dopamine at Graphene and Bismuth Nanocomposite Film Modified Electrode. Int. J. Electrochem. Soc. 2015, 10, 1199–1207.
  • Peng, J.; Gao, W.; Gupta, B. K.; Liu, Z.; Aburto, R. R.; Ge, L.; Song, L.; Alemany, L. B.; Zhan, X.; Gao, G.; et al. Graphene Quantum Dots Derived from Carbon Fibers. Nano Lett. 2012, 12, 844 DOI: 10.1021/nl2038979.
  • Ding, J.; Sun, W.; Wei, G.; Su, Z. Cuprous Oxide Microspheres on Grapheme Nanosheets: an Enhanced Material for Nonenzymatic Electrochemical Detection of H2O2 and Glucose. RSC Adv. 2015, 5, 35338. DOI: 10.1039/C5RA04164C.
  • Wang, L.; Zhang, Y.; Wu, A.; Wei, G. Designed Graphene-peptide Nanocomposites for Biosensor Applications: A review. Anal. Chim. Acta. 2017, 985, 24 DOI: 10.1016/j.aca.2017.06.054.
  • Li, D.; Zhang, W.; Yu, X.; Wang, Z.; Su, Z.; Wei, G. When Biomolecules Meet Graphene: from Molecule-level Interactions to Material Design and Applications. Nanoscale. 2016, 8, 19491. DOI: 10.1039/C6NR07249F.
  • Shen, Y.; Sheng, Q.; Zheng, J. High-performance Electrochemical Dopamine Sensor Based on Platinum-nickel Bimetallic Decorated Poly(dopamine)-Functionalized Reduced Graphene Oxide Nanocomposite. Anal. Methods. 2017, 9, 4566–4573. DOI: 10.1039/C7AY00717E.
  • Yang, J.; Yu, J.-H.; Strickler, J. R.; Chang, W.-J.; Gunasekaran, S. Nickel Nanoparticle–chitosan-reduced Graphene Oxide-modified Screen-printed Electrodes for Enzyme-free Glucose Sensing in Portable Microfluidic Devices. Biosens. Bioelectr. 2013, 47, 530–538. DOI: 10.1016/j.bios.2013.03.051.
  • Hassan, H. M. A.; Abdelsayed, V.; Khder, A. E. R. S.; AbouZeid, K. M.; Terner, J.; El, −Shall, M. S.; Al, −Resayes, S. I.; El, −.; Azhary, A. A. Microwave Synthesis of Graphene Sheets Supporting Metal Nanocrystals in Aqueous and Organic Media. J. Mater. Chem. 2009, 19, 3832. DOI: 10.1039/b906253j.
  • Siamaki, A. R.; Khder Abd El, R. S.; Abdelsayed, V.; Samy, E.-S. M.; Frank, G. B. Microwave-Assisted Synthesis of Palladium Nanoparticles Supported on Graphene: A Highly Active and Recyclable Catalyst for Carbon − Carbon Cross-Coupling Reactions. J. Catal. 2011, 279, 1. DOI: 10.1016/j.jcat.2010.12.003.
  • Bhowmik, K.; Mukherjee, A.; Mishra, M. K.; De, G. Stable Ni nanoparticle-reduced graphene oxide composites for the reduction of highly toxic aqueous Cr(VI) at room temperature . Langmuir. 2014, 30, 3209 DOI: 10.1021/la500156e.
  • Fu, L.; Zheng, Y.-H.; Fu, Z.-X. Ascorbic Acid Amperometric Sensor Using a Graphene-wrapped Hierarchical TiO 2 Nanocomposite. Chem. Pap. 2015, 69, 655.
  • Mary Nancy, T. E.; Anitha Kumary, V. Synergistic Electrocatalytic Effect of Graphene/nickel Hydroxide Composite for the Simultaneous Electrochemical Determination of Ascorbic Acid, dopamine and Uric Acid. Electrochim. Acta. 2014, 133, 233. DOI: 10.1016/j.electacta.2014.04.027.
  • Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. DOI: 10.1021/ja01539a017.
  • Xu, Y. X.; Zhao, L.; Bai, H.; Hong, W. J.; Li, C.; Shi, G. Q. Chemically Converted Graphene Induced Molecular Flattening of 5; 10; 15; 20-Tetrakis(1-methyl-4-pyridinio) porphyrin and Its Application for Optical Detection of Cadmium(II) Ions. J. Am. Chem. Soc. 2009, 131, 13490. DOI: 10.1021/ja905032g.
  • Wu, Z.; Yang, S.; Chen, Z.; Zhang, T.; Guo, T.; Wang, Z.; Liao, F. Synthesis of Ag Nanoparticles-decorated Poly(m-phenylenediamine) hollow Spheres and the Application for Hydrogen Peroxide Detection. Electrochim. Acta. 2013, 98, 104–108. DOI: 10.1016/j.electacta.2013.03.038.
  • Raj Kumar, T.; Shaheer Akhtar, M.; Gnana Kumar, G. Ni–Co Bimetallic Nanoparticles Anchored Reduced Graphene Oxide as an Efficient Counter Electrode for the Application of Dye Sensitized Solar Cells. J. Mater. Sci: Mater. Electron. 2017, 28, 823. DOI: 10.1007/s10854-016-5596-9.
  • Justice Babu, K.; Senthilkumar, N.; Kim, A. R.; Gnana Kumar, G. Freestanding and Binder Free PVdF-HFP/Ni-Co Nanofiber Membrane as a Versatile Platform for the Electrocatalytic Oxidation and Non-enzymatic Detection of Urea. Sens. Actuators B: Chem. 2017, 241, 541–551. DOI: 10.1016/j.snb.2016.10.069.
  • Senthilkumar, N.; Gnana Kumar, G.; Manthiram, A. 3D Hierarchical Core–Shell Nanostructured Arrays on Carbon Fibers as Catalysts for Direct Urea Fuel Cells. Adv. Energy Mater. 2018, 8, 1702207. DOI: 10.1002/aenm.201702207.
  • Salamon, J.; Sathishkumar, Y.; Ramachandran, K.; Lee, Y. S.; Yoo, D. J.; Kim, A. R.; Gnana Kumar, G. One-pot Synthesis of Magnetite Nanorods/graphene Composites and Its Catalytic Activity toward Electrochemical Detection of Dopamine. Biosens. Bioelectr. 2015, 64, 269–276. DOI: 10.1016/j.bios.2014.08.085.
  • Vennila, P.; Yoo, D. J.; Kim, A. R.; Gnana Kuma, G. Ni-Co/Fe 3 O 4 Flower-like Nanocomposite for the Highly Sensitive and Selective Enzyme Free Glucose Sensor Applications. J. Alloys Compd. 2017, 703, 633–642. DOI: 10.1016/j.jallcom.2017.01.044.
  • Ramachandran, K.; Raj Kumar, T.; Justice Babu, K.; Gnana Kumar, G. Ni-Co Bimetal Nanowires Filled Multiwalled Carbon Nanotubes for the Highly Sensitive and Selective Non-enzymatic Glucose Sensor Applications. Sci. Rep. 2016, 6, 36583. DOI: 10.1038/srep36583.
  • Ranjani, M.; Sathishkumar, Y.; Lee, Y. S.; Jin Yoo, D.; Kim, A. R.; Gnana Kumar, G. Ni–Co Alloy Nanostructures Anchored on Mesoporous Silica Nanoparticles for Non-enzymatic Glucose Sensor Applications. RSC Adv. 2015, 5, 57804. DOI: 10.1039/C5RA08471G.
  • Saravanan, J.; Ramasamy, R.; Annal Therese, H.; Amala, G.; Gnana Kumar, G. Electrospun CuO/NiO Composite Nanofibers for Sensitive and Selective Non-enzymatic Nitrite Sensors. New J. Chem. 2017, 42, 14766–14771. DOI: 10.1039/C7NJ02073B.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.