572
Views
34
CrossRef citations to date
0
Altmetric
Original Articles

Enhanced oil recovery using silica nanoparticles in the presence of salts for wettability alteration

, , &
Pages 402-413 | Received 12 Sep 2018, Accepted 10 Feb 2019, Published online: 08 May 2019

References

  • Suleimanov, B.; Ismailov, F.; Veliyev, E. Nanofluid for Enhanced Oil Recovery, J. Petrol. Sci. Eng. 2011, 78, 431–437. DOI:10.1016/j.petrol.2011.06.014.
  • Ogolo, N.; Olafuyi, O; Onyekonwu, M. Enhanced Oil Recovery Using Nanoparticles. SPE Saudi Arabia section technical symposium and exhibition. Society of Petroleum Engineers, 2012.
  • Rezvani, H; Riazi, M; Tabaei, M; Kazemzadeh, Y; Sharifi, M. Experimental investigation of interfacial properties in the EOR mechanisms by the novel synthesized Fe3O4@ chitosan nanocomposites. Colloids Surf. A: Physicochem. Eng. Asp. 2018. 544, 15–27. DOI:10.1016/j.colsurfa.2018.02.012.
  • Kazemzadeh, Y; Shojaei, S; Riazi, M; Sharifi, M. Review on Application of Nanoparticles for EOR Purposes; A Critical of the Opportunities and Challenges. Chin. J. Chem. Eng. 2018. DOI:10.1016/j.cjche.2018.05.022
  • Chatenever, A; Calhoun, J. C. Jr. Visual Examinations of Fluid Behavior in Porous Media-Part I, J. Petrol. Technol. 1952. 4, 149–156. DOI:10.2118/135-G.
  • Hendraningrat, L; Li, S; Torsaeter, L. Enhancing Oil Recovery of Low-Permeability Berea Sandstone Through Optimised Nanofluids Concentration. SPE Enhanced Oil Recovery Conference. Society of Petroleum Engineers. 2013.
  • Miranda, C. R; Lara, L.S.d.; Tonetto, B.C. Stability and Mobility of Functionalized Silica Nanoparticles for Enhanced Oil Recovery Applications. SPE International Oilfield Nanotechnology Conference and Exhibition. Society of Petroleum Engineers. 2012.
  • Kaasa, A. T. Investigation of How Silica Nanoparticle Adsorption Affects Wettability in Water-Wet Berea Sandstone, Master thesis, NTNU. 2013. https://brage.bibsys.no/xmlui/handle/11250/240048
  • Nazari Moghaddam, R; Bahramian, A; Fakhroueian, Z; Karimi, A; Arya S. Comparative Study of Using Nanoparticles for Enhanced Oil Recovery: Wettability Alteration of Carbonate Rocks. Energy Fuels. 2015, 29, 2111–2119. DOI:10.1021/ef5024719.
  • Li, S; Hendraningrat, L; O. Torsaeter, O. Improved Oil Recovery by Hydrophilic Silica Nanoparticles Suspension: 2 Phase Flow Experimental Studies. IPTC 2013: International Petroleum Technology Conference. 2013.
  • Roustaei, A; Moghadasi, J; Bagherzadeh, H; Shahrabadi, A. An Experimental Investigation of Polysilicon Nanoparticles' Recovery Efficiencies Through Changes in Interfacial Tension and Wettability Alteration. SPE International Oilfield Nanotechnology Conference and Exhibition. Society of Petroleum Engineers. 2012.
  • Ahmed, A; Mohd Saaid, I; Pilus, R. M; Abbas Ahmed, A; Tunio, A. H; Baig, M. K. Development of Surface Treated Nanosilica for Wettability Alteration and Interfacial Tension Reduction. J. Disper. Sci. Technol. 2017, 39, 1469–1475.
  • Joonaki, E; Ghanaatian, S. The Application of Nanofluids for Enhanced Oil Recovery: Effects on Interfacial Tension and Coreflooding Process. Petrol. Sci. Technol. 2014, 32, 2599–2607. DOI:10.1080/10916466.2013.855228.
  • Dehghan Monfared, A; Ghazanfari, M. H; Jamialahmadi, M; Helalizadeh, A. Potential Application of Silica Nanoparticles for Wettability Alteration of Oil–Wet Calcite: A Mechanistic Study. Energy Fuels. 2016, 30, 3947–3961. DOI:10.1021/acs.energyfuels.6b00477.
  • Al-Anssari, S; Barifcani, A; Wang, S; Iglauer, S. Wettability Alteration of Oil-Wet Carbonate by Silica Nanofluid. J. Colloid Inter. Sci. 2016, 461, 435–442. DOI:10.1016/j.jcis.2015.09.051.
  • Sulaiman, W. R. W; Adala, A; Junin, R; Ismail, I; Ismail, A. R.; Hamid, M. A.; Kamaruddin, M. J.; Zakaria, Z. Y; Johari, A.; Hassim, M. H. Effects of Salinity on Nanosilica Applications in Altering Limestone Rock Wettability for Enhanced Oil Recovery. Adv. Mat. Res. 2015, 1125, 200–204. DOI:10.4028/www.scientific.net/AMR.1125.200.
  • Hendraningrat, L; Torsaeter, O. A Study of Water Chemistry Extends the Benefits of Using Silica-Based Nanoparticles on Enhanced Oil Recovery. Appl. Nanosci. 2016, 6, 83–95. DOI:10.1007/s13204-015-0411-0.
  • Li, R; Jiang, P; Gao, C; Huang, F; Xu, R; Chen, X. Experimental Investigation of Silica-Based Nanofluid Enhanced Oil Recovery: The Effect of Wettability Alteration. Energy Fuels. 2016, 31, 188–197. DOI:10.1021/acs.energyfuels.6b02001.
  • Zhang, H; Ramakrishnan, T; Nikolov, A; Wasan, D. Enhanced Oil Recovery Driven by Nanofilm Structural Disjoining Pressure: Flooding Experiments and Microvisualization. Energy Fuels. 2016, 30, 2771–2779. DOI:10.1021/acs.energyfuels.6b00035.
  • Kondiparty, K; Nikolov, A; Wu, S; Wasan, D. Wetting and Spreading of Nanofluids on Solid Surfaces Driven by the Structural Disjoining Pressure: Statics Analysis and Experiments. Langmuir. 2011, 27, 3324–3335. DOI:10.1021/la104204b.
  • Li, S. An Experimental Investigation of Enhanced Oil Recovery Mechanisms in Nanofluid Injection Process. Ph.D. Dissertation, NTNU; 2016: 37.
  • Hendraningrat, L; Shidong, L. A Glass Micromodel Experimental Study of Hydrophilic Nanoparticles Retention for EOR Project. SPE Russian Oil and Gas Exploration and Production Technical Conference and Exhibition. Society of Petroleum Engineers, 2012.
  • Bjørnar, E. The Potential of Hydrophilic Silica Nanoparticles for EOR Purposes. 2012.
  • Dubey, S; Doe, P. Base number and Wetting Properties of Crude Oils. SPE Reserv. Eng. 1993, 8, 195–200. DOI:10.2118/22598-PA.
  • Mwangi, P; Thyne, G; Rao, D. Extensive Experimental Wettability Study in Sandstone and Carbonate-Oil-Brine Systems: Part 1–Screening Tool Development. International Symposium of the Society of Core Analysts held in Napa Valley. California, USA. 2013, pp. 16–19.
  • AlDousary, S. Determining pore level mechanisms of alkaline surfactant polymer flooding using a micromodel. SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, 2012.
  • Doryani, H; Malayeri, M; Riazi, M. Visualization of Asphaltene Precipitation and Deposition in a Uniformly Patterned Glass Micromodel. Fuel. 2016, 182, 613–622. DOI:10.1016/j.fuel.2016.06.004.
  • Howe, A; Clarke, A; Mitchell, J; Staniland, J; Hawkes, L. Visualising Surfactant EOR in Core Plugs and Micromodels. SPE Asia Pacific Enhanced Oil Recovery Conference. Society of Petroleum Engineers, 2015.
  • Khezrnejad, A; James, L; Johansen, T. Water enhancement using nanoparticles in water alternating gas (WAG) micromodel experiments. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, 2014.
  • Mei, S; Bryan, J. L; Kantzas, A. Experimental Study of the Mechanisms in Heavy Oil Waterflooding Using Etched Glass Micromodel. SPE Heavy Oil Conference Canada. Society of Petroleum Engineers, 2012.
  • Jamaloei, B.Y; Kharrat, R. Analysis of Microscopic Displacement Mechanisms of Dilute Surfactant Flooding in Oil-Wet And Water-Wet Porous Media. Transport Porous Med. 2010, 81, 1. DOI:10.1007/s11242-009-9382-5.
  • Lobaskin, V; Dünweg, B; Holm, C. Electrophoretic Mobility of a Charged Colloidal Particle: A Computer Simulation Study. J. Phys. Condens. Matter. 2004, 16, S4063. DOI:10.1088/0953-8984/16/38/021.
  • de Lara, L. S; Michelon, M. F; Metin, C. O; Nguyen, Q. P; Miranda, C. R. Interface Tension of Silica Hydroxylated Nanoparticle with Brine: A Combined Experimental and Molecular Dynamics Study. J. Chem. Phys. 2012, 136, 164702. DOI:10.1063/1.4705525.
  • Bai, L; Li, C; Korte, C; Huibers, B. M; Pales, A. R; Liang, W. -z; Ladner, D; Daigle, H; Darnault, C. J. Effects of Silica-Based Nanostructures with Raspberry-Like Morphology and Surfactant on the Interfacial Behavior of Light, Medium, and Heavy Crude Oils at Oil-Aqueous Interfaces. Appl. Nanosci. 2017, 7, 947–972. DOI:10.1007/s13204-017-0630-7.
  • Li, Y; Li, Y.; Laidlaw, W. G; Wardlaw, N. C. Sensitivity of Drainage and Imbibition to Pore Structures as Revealed by Computer Simulation of Displacement Process. Adv. Colloid Interface Sci. 1986, 26, 1.
  • Tang, G. -Q; Morrow, N R. Influence of Brine Composition and Fines Migration on Crude Oil/Brine/Rock Interactions and Oil Recovery. J. Petrol. Sci. Eng. 1999, 24, 99–111. DOI:10.1016/S0920-4105(99)00034-0.
  • Ligthelm, D. J; Gronsveld, J; Hofman, J.; Brussee, N.; Marcelis, F; van der Linde, H. Novel Waterflooding Strategy by Manipulation of Injection Brine Composition. EUROPEC/EAGE conference and exhibition. Society of Petroleum Engineers, 2009.
  • Lager, A; Webb, K. J; Black, C; Singleton, M; Sorbie, K. S. Low Salinity Oil Recovery—An Experimental Investigation1. Petrophysic. 2008, 49.
  • Tang, G; Morrow, N. R. Salinity, Temperature, Oil Composition, and Oil Recovery by Waterflooding, SPE Reserv. Eng. 1997, 12, 269–276. DOI:10.2118/36680-PA.
  • Morrow, N. R.; Tang, G. -q; Valat, M; Xie, X. Prospects of Improved Oil Recovery Related to Wettability and Brine Composition. J. Petrol. Sci. Eng. 1998, 20, 267–276. DOI:10.1016/S0920-4105(98)00030-8.
  • Tian, H; Wang, M. Electrokinetic Mechanism of Wettability Alternation at Oil-Water-Rock Interface, Surface Science Reports, 2018.
  • Jackson, M.D.; Al-Mahrouqi, D; Vinogradov, J. Zeta Potential in Oil-Water-Carbonate Systems and Its Impact on Oil Recovery During Controlled Salinity Water-Flooding. Sci. Rep. 2016, 6, 37363.
  • Hadia, N. J; Ashraf, A; Tweheyo, M. T; Torsaeter, O. Laboratory Investigation on Effects of Initial Wettabilities on Performance of Low Salinity Waterflooding. J. Petrol. Sci. Eng. 2013, 105, 18–25. DOI:10.1016/j.petrol.2013.03.014.
  • Wasan, D; Nikolov, A; Kondiparty, K. The Wetting and Spreading of Nanofluids on Solids: Role of the Structural Disjoining Pressure. Curr. Opin. Colloid Interface Sci. 2011, 16, 344–349. DOI:10.1016/j.cocis.2011.02.001.
  • Nikolov, A; Kondiparty, K; Wasan, D. Nanoparticle Self-Structuring in a Nanofluid Film Spreading on a Solid Surface. Langmuir. 2010, 26, 7665–7670. DOI:10.1021/la100928t.
  • McElfresh, P. M; Holcomb, D. L; Ector, D. Application of Nanofluid Technology to Improve Recovery in Oil and Gas Wells. SPE International Oilfield Nanotechnology Conference and Exhibition. Society of Petroleum Engineers, 2012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.