762
Views
32
CrossRef citations to date
0
Altmetric
Original Articles

Photocatalytic degradation of amoxicillin using Co-doped TiO2 synthesized by reflux method and monitoring of degradation products by LC–MS/MS

, , , &
Pages 414-425 | Received 18 Oct 2018, Accepted 10 Feb 2019, Published online: 22 Mar 2019

References

  • Jianguo, S.; Zhen, X.; Wei, L.; Chang-Tang, C. KBrO3 and Graphene as Double and Enhanced Collaborative Catalysts for the Photocatalytic Degradation of Amoxicillin by UVA/TiO2 Nanotube Processes. Mat. Sci. Semicon. Proc. 2016, 52, 32–37. DOI:10.1016/j.mssp.2016.04.011.
  • Augusto, A. S.; Fiderman, M. M.; Ciro, B. L.; Aracely, H. R.; José, C. M. Degradation and Loss of Antibacterial Activity of Commercial Amoxicillin with TiO2/WO3-Assisted Solar Photocatalysis. Catalysts. 2018, 8, 222.
  • Mohsen, S.; Soheil, A.; Alireza, K. Degradation of Amoxicillin in Aqueous Solution Using Nanolepidocrocite Chips/H2O2/UV: Optimization and Kinetics Studies. J. Ind. Eng. Chem. 2014, 20, 1772–1778.
  • Lvshan, Z.; Xiaogang, G.; Chuan, L.; Wei, W. Electro-photocatalytic Degradation of Amoxicillin Using Calcium Titanate. Open Chem. 2018, 16, 949–955.
  • Lima Perini, J. A.; Tonetti, A. L.; Vidal, C.; Montagner, C. C.; Pupo Nogueira, R. F. Simultaneous Degradation of Ciprofloxacin, Amoxicillin, Sulfathiazole and Sulfamethazine, and Disinfection of Hospital Effluent after Biological Treatment via Photo-Fenton Process under Ultraviolet Germicidal Irradiation. Catal B: Environ. 2018, 224, 761–771. DOI:10.1016/j.apcatb.2017.11.021.
  • Xiangyu, W.; Anqi, W.; Jun, M. Visible-light-driven Photocatalytic Removal of Antibiotics by Newly Designed C3N4@MnFe2O4-graphene Nanocomposites. J. Hazard Mat. 2017, 336, 81–92. DOI:10.1016/j.jhazmat.2017.04.012.
  • Klauson, D.; Šakarašvili, M.; Pronina, N.; Krichevskaya, M.; Kärber, E.; Mikli, V. Aqueous Photocatalytic Degradation of Selected Micropollutants by Pd-modified Titanium Dioxide in Three Photoreactor Types. Environ. Technol. 2017, 38, 860–871. DOI:10.1080/09593330.2016.1214185.
  • Alalm, M. G.; Tawfik, A.; Ookawara, S. Enhancement of Photocatalytic Activity of TiO2 by Immobilization on Activated Carbon for Degradation of Pharmaceuticals. J. Environ. Chem. Eng. 2016, 4, 1929–1937. DOI:10.1016/j.jece.2016.03.023.
  • Lindberg, R. H.; Wennberg, P.; Johansson, M. I.; Tysklind, M.; Andersson,B, A. Screening of Human Antibiotic Substances and Determination of Weekly Mass Flows in Five Sewage Treatment Plants in Sweden, Environ. Sci. Technol. 2005, 39, 3921–3929.
  • Clara, M.; Strenn, B.; Gans, O.; Martinez, E.; Kreuzinger, N.; Kroiss, H. Removal of Selected Pharmaceuticals, fragrances and Endocrine Disrupting Compounds in a Membrane Bioreactor and Conventional Wastewater Treatment Plants. Water Res. 2005, 39, 4797–4807. DOI:10.1016/j.watres.2005.09.015.
  • Watkinson, A. J.; Murby, E. J.; Kolpin, D. W.; Costanzo, S. D. The Occurrence of Antibiotics in an Urban Watershed: from Wastewater to Drinking Water. Sci. Total Environ. 2008, 7, 2711–2723. DOI:10.1016/j.scitotenv.2008.11.059.
  • Zhao, L.; Ji, Y.; Yao, J.; Long, S.; Li, D.; Yang, Y. Quantifying the Fate and Risk Assessment of Different Antibiotics during Wastewater Treatment Using a Monte Carlo Simulation. J. Clean. Prod. 2017, 168, 626–631. DOI:10.1016/j.jclepro.2017.09.065.
  • Thaís Helena, O. N.; Rafaela Brito, P. M.; Fernando Henrique, A. M.; Renata Pereira, L. M.; Camila Costa, A.; Rochel Montero, L. Ozone Oxidation of β-Lactam Antibiotic Molecules and Toxicity Decrease in Aqueous Solution and Industrial Wastewaters Heavily Contaminated. Ozone: Sci. Eng. 2018, 40, 385–391.
  • Xu, P.; Janex, M.; Savoye, P.; Cockx, A.; Lazarova, V. Wastewater Disinfection by Ozone: main Parameters for Process Design. Water Res. 2002, 36, 1043–1055. DOI:10.1016/S0043-1354(01)00298-6.
  • Radosavlevic, K. D.; Golubovic, A. V.; Radisic, M. M.; Mladenovic, A. R.; Mijin, D. Z.; Petrovic, S. D. Amoxicillin Photodegradation by Nanocrystalline TiO2. CI&Ceq. 2017, 23, 187–195. DOI:10.2298/CICEQ160122030R.
  • Rauf, M. A.; Meetani, M. A.; Hisaindee, S. An Overview on the Photocatalytic Degradation of Azo Dyes in the Presence of TiO2 Doped with Selective Transition Metals. Desalination 2011, 276, 13–27. DOI:10.1016/j.desal.2011.03.071.
  • Mohamed Gar, A.; Ahmed, T.; Shinichi, O.; Enhancement of Photocatalytic Activity of TiO2 by Immobilization on Activated Carbon for Degradation of Pharmaceuticals. J. Environ. Chem. Eng. 2016, 4, 1929–1937. DOI:10.1016/j.jece.2016.03.023.
  • Hosseini-Zori, M. Co-doped TiO2 Nanostructures as a Strong Antibacterial Agent and Self-cleaning Cover: Synthesis, characterization and Investigation of Photocatlytic Activity under UV Irradiation. J. Photochem. Photobiol. B. 2018, 178, 512–520. DOI:10.1016/j.jphotobiol.2017.12.008.
  • Siddiqa, A.; Masih, D.; Anjum, D.; Siddiq, M. Cobalt and Sulfur co-doped Nano-size TiO2 for Photodegradation of Various Dyes and Phenol. J. Environ. Sci. (China). 2015, 37, 100–109. DOI:10.1016/j.jes.2015.04.024.
  • Sarkar, D.; Mukherjee, S.; Chattopadhyay, K. K. Synthesis Characterization and High Natural Sunlight Photocatalytic Performance of Cobalt Doped TiO2 Nanofibers. Physica. E. 2013, 50, 37–43. DOI:10.1016/j.physe.2013.02.010.
  • Hamadanian, M.; Reisi-Vanani, A.; Majedi, A. Sol-gel Preparation and Characterization of Co/TiO2 Nanoparticles: Application to the Degradation Methyl Orange. J. Iran. Chem. Soc. 2010, 7, 52–58.
  • Hamadanian, M.; Karimzadeh, S.; Jabbari, V.; Villagran, D. Synthesis of Cysteine, Cobalt and Copper-Doped TiO2 Nanocatalysts with Excellent Visible-Light-Induced Photocatalytic Activity. Mat. Sci. Semicon. Proc. 2016, 41, 168–176. DOI:10.1016/j.mssp.2015.06.085.
  • Kiraz, N.; Burunkaya, E.; Kesmez, Ö.; Çamurlu, H. E.; Asiltürk, M.; Yeşil, Z.; Arpaç, E. Preparation of Sn Doped Nanometric TiO2 Powders by Reflux and Hydrothermal Syntheses and Their Characterization. J. Sol-Gel Sci. Technol. 2011, 59, 381–386. August DOI:10.1007/s10971-011-2515-7.
  • Narges, O.; Mansooreh, D.; Mohammad, M. The Removal of Amoxicillin from Aquatic Solutions Using the TiO2/UV-C Nanophotocatalytic Method Doped with Trivalent Iron. Appl. Water Sci. 2018, 8, 97.
  • Karthik, K.; Pandian, S. K.; Kumar, K. S.; Jaya, N. V. Influence of Dopant Level on Structural, optical and Magnetic Properties of Co-doped Anatase TiO2 Nanoparticles. Appl. Surf. Anal. 2010, 256, 4757–4760. DOI:10.1016/j.apsusc.2010.02.085.
  • Reyes-Coronado, D.; Rodriguez-Gattorno, G.; Espinosa-Pesqueira, M. E.; Cab, C.; Coss, R.; Oskam, G. Phase-pure TiO2 Nanoparticles: anatase, brookite and Rutile. Nanotechnology 2008, 19, 145605. DOI:10.1088/0957-4484/19/14/145605.
  • Pirbazari, A.; Monazzam, P.; Kisomi, B. F. Co/TiO2 Nanoparticles: preparation, characterization and Its Application for Photocatalytic Degradation of Methylene Blue. Deswater. 63, 2017, 283–292. DOI:10.5004/dwt.2017.20205.
  • Wojcieszak, D.; Mazur, A.; Michal, M.; Kaczmarek, D.; Domaradzki, J. Influence of Doping with Co, Cu, Ce and Fe on Structure and Photocatalytic Activity of TiO2 Nanoparticles. Mat. Sci. (Poland) 2017, 35, 725–732. DOI:10.1515/msp-2017-0117.
  • Kumar, A.; Kashyap, M. K.; Sabharwal, N.; Kumar, S.; Kumar, A.; Kumar, P.; Asokan, K.; Impedance analysis and dielectric response of anatase TiO2 nanoparticles codoped with Mn and Co ions. Mater. Res. Express. 2017, 4, 115035.
  • Ghasemi, S.; Rahimnejad, S.; Setayesh, S. R.; Rohani, S.; Gholami, M. R. Transition Metal Ions Effect on the Properties and Photocatltic Activity of Nanocrystalline TiO2 Prepared in an Ionic Liquid. J. Hazard. Mat. 2009, 172, 1573–1578. DOI:10.1016/j.jhazmat.2009.08.029.
  • Anupama, C.; Kumarmani, R.; Vasundhara, M.; Ram Joshic, S.; Singh, J. Structural and Magnetic Study of Undoped and Cobalt Doped TiO2 Nanoparticles. RSC Adv. 2018, 8, 10939. DOI:10.1039/C8RA00626A.
  • Sivarao, T.; Radha, D. C. Synthesis of Visible Light Driven Cobalt Doped Nanotitania Assisted by Triton X-100: Characterization and Application in Photocatalytic Degradation of Congo Red. Nano. Sci. Nano. Technol. 2017, 11, 117.
  • Zhong, L.; Azhar, AlH.; Bin, G.; Tao, W. Z.; Jun, Y. The Effect of Co-doping on the Humidity Sensing Properties of Orderedmesoporous TiO2. Appl. Surf. Sci. 2017, 412, 638–647. DOI:10.1016/j.apsusc.2017.03.156.
  • Klauson, D.; Babkina, J.; Stepanova, K.; Krichevskaya, M.; Preis, S. Aqueous Photocatalytic Oxidation of Amoxicillin. Catal. Today. 2010, 151, 39–45. DOI:10.1016/j.cattod.2010.01.015.
  • Elmolla, E. S.; Chaudhuri, M. Comparison of Different Advanced Oxidation Processes for Treatment of Antibiotic Aqueous Solution. Desalination. 2010, 256, 43–47. DOI:10.1016/j.desal.2010.02.019.
  • Li, T.; Yang, S. G.; Huang, L. S.; Gu, B. X.; Du, Y. W. A Novel Process from Cobalt Nanowire to Co3O4 Nanotube. Nanotechnology. 2004, 15, 1479–1482. DOI:10.1088/0957-4484/15/11/018.
  • Andreozzi, R.; Canterino, M.; Marotta, R.; Paxeus, N. Antibiotic Removal from Wastewaters: the Ozonation of Amoxicillin. J. Hazard. Mater. 2005, 122, 243–250. DOI:10.1016/j.jhazmat.2005.03.004.
  • Bougarrani, S.; Skadell, K.; Arndt, R.; El Azzouzi, M.; Glaser, R. Novel CaxMnOy/TiO2 Composites for Efficient Photocatalytic Degradation of Methylene Blue and the Herbicide Imazapyr in Aqueous Solution under Visible Light Irradiation. J. Environ. Chem. Eng. 2018, 6, 1934–1942. DOI:10.1016/j.jece.2018.02.026.
  • Kristin, H.; Bettina, S.; Gerrit, S.; Thorsten, R. New Hydrolysis Products of the Beta-lactam Antibiotic Amoxicillin, their pH-dependent Formation and Search in Municipal Wastewater. Water Res. 2016, 88, 880–888.
  • Konstantinou, I. K.; Albanis, T. A. TiO2-assisted Photocatalytic Degradation of Azo Dyes in Aqueous Solution: kinetic and Mechanistic Investigations. A Rev. Appl. Catal. B: Environ. 2004, 49, 1–14. DOI:10.1016/j.apcatb.2003.11.010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.