714
Views
13
CrossRef citations to date
0
Altmetric
Original Articles

Preparation and characterization of cocoa butter and whey protein isolate based emulgels for pharmaceutical and probiotics delivery applications

, , , , , , , , ORCID Icon & show all
Pages 426-440 | Received 21 Nov 2018, Accepted 10 Feb 2019, Published online: 03 Apr 2019

References

  • Li, Y.; Hu, M.; Xiao, H.; Du, Y.; Decker, E. A.; McClements, D. J. Controlling the Functional Performance of Emulsion-based Delivery Systems Using Multi-component Biopolymer Coatings. Eur. J. Pharm. Biopharm. 2010, 76, 38–47. DOI: 10.1016/j.ejpb.2010.05.004.
  • Verma, A. Emulgels: Application Potential in Drug Delivery, in Funct. Biopolym. 2018, Springer: Cham 343–371.
  • D'Cruz, O. J.; Uckun, F. M. Gel-Microemulsions as Vaginal Spermicides and Intravaginal Drug Delivery Vehicles. Contraception. 2001, 64, 113–123. DOI: 10.1016/S0010-7824(01)00233-5.
  • Vandana, K. R.; Yalavarthi, P.; Sundaresan, C. R.; Sriramaneni, R.; Vadlamudi, H. In-vitro Assessment and Pharmacodynamics of Nimesulide Incorporated Aloe Vera Transemulgel. Cddt. 2014, 11, 162–167. DOI: 10.2174/1570163810666131202233721.
  • Venkataharsha, P.; Maheshwara, E.; Prasanna, Y. R.; Reddy, V. A.; Rayadu, B. S.; Karisetty, B. Liposomal Aloe Vera Trans-emulgel Drug Delivery of Naproxen and Nimesulide: A Study. Int. J. Pharma. Investig. 2015, 5, 28. DOI: 10.4103/2230-973X.147230.
  • Baibhav, J. Development and Characterization of Clarithromycin Emulgel for Topical Delivery. Int. J. Drug Dev. Res. 2012, 4, 310–323.
  • Behera, B.; Biswal, D.; Uvanesh, K.; Srivastava, A. K.; Bhattacharya, M. K.; Paramanik, K.; Pal, K. Modulating the Properties of Sunflower Oil Based Novel Emulgels Using Castor Oil Fatty Acid Ester: Prospects for Topical Antimicrobial Drug Delivery. Colloids Surf B: Biointerfaces. 2015, 128, 155–164. DOI: 10.1016/j.colsurfb.2015.02.026.
  • Rehman, K.; Zulfakar, M. H. Recent Advances in Gel Technologies for Topical and Transdermal Drug Delivery. Drug Dev. Ind. Pharm. 2014, 40, 433–440. DOI: 10.3109/03639045.2013.828219.
  • Behera, B.; Sagiri, S. S.; Singh, V. K.; Pal, K.; Anis, A. Mechanical Properties and Delivery of Drug/probiotics from Starch and Non‐starch Based Novel Bigels: A Comparative Study. Starch‐Stärke 2014, 66, 865–879. DOI: 10.1002/star.201400045.
  • Capela, P.; Hay, T.; Shah, N. Effect of Homogenisation on Bead Size and Survival of Encapsulated Probiotic Bacteria. Food Res. Int. 2007, 40, 1261–1269. DOI: 10.1016/j.foodres.2007.08.006.
  • Pucciarelli, D. L. Cocoa and Heart Health: a Historical Review of the Science. Nutrients. 2013, 5, 3854–3870. DOI: 10.3390/nu5103854.
  • Gesteira, A. d S.; Micheli, F.; Ferreira, C. F.; Cascardo, J. C. d M. Isolation and Purification of Functional Total RNA from Different Organs of Cacao Tree during Its Interaction with the Pathogen Crinipellis Perniciosa. Biotechniques. 2003, 35, 494–501. DOI: 10.2144/03353st02.
  • Lipp, M.; Simoneau, C.; Ulberth, F.; Anklam, E.; Crews, C.; Brereton, P.; de Greyt, W.; Schwack, W.; Wiedmaier, C. Composition of Genuine Cocoa Butter and Cocoa Butter Equivalents. J. Food Compos. Anal. 2001, 14, 399–408. DOI: 10.1006/jfca.2000.0984.
  • Lipp, eM.; Anklam, E. Review of Cocoa Butter and Alternative Fats for Use in Chocolate—part A. Compositional Data. Food Chem. 1998, 62, 73–97. DOI: 10.1016/S0308-8146(97)00160-X.
  • Torres-Moreno, M.; Torrescasana, E.; Salas-Salvadó, J.; Blanch, C. Nutritional Composition and Fatty Acids Profile in Cocoa Beans and Chocolates with Different Geographical Origin and Processing Conditions. Food Chem. 2015, 166, 125–132. DOI: 10.1016/j.foodchem.2014.05.141.
  • Naik, B.; Kumar, V. Cocoa Butter and Its Alternatives: A Review. J. Biores. Eng. Technol. 2014, 1, 7–17.
  • Gunstone, F. Vegetable Oils in Food Technology: Composition, Properties and Uses. John Wiley & Sons: NewYork, 2011.
  • Hundre, S. Y.; Karthik, P.; Anandharamakrishnan, C. Effect of Whey Protein Isolate and β-Cyclodextrin Wall Systems on Stability of Microencapsulated Vanillin by Spray–freeze Drying Method. Food Chem. 2015, 174, 16–24. DOI: 10.1016/j.foodchem.2014.11.016.
  • Santos, M. B.; N.R. da, C.; Garcia‐Rojas, E. E. Interpolymeric Complexes Formed between Whey Proteins and Biopolymers: Delivery Systems of Bioactive Ingredients. Compr. Rev. Food Sci. Food Saf. 2018, 17, 792–805. DOI: 10.1111/1541-4337.12350.
  • Ozturk, B.; Argin, S.; Ozilgen, M.; McClements, D. J. Formation and Stabilization of Nanoemulsion-based Vitamin E Delivery Systems Using Natural Biopolymers: Whey Protein Isolate and Gum Arabic. Food Chem. 2015, 188, 256–263. DOI: 10.1016/j.foodchem.2015.05.005.
  • Hsein, H.; Garrait, G.; Beyssac, E.; Hoffart, V. Whey Protein Mucoadhesive Properties for Oral Drug Delivery: mucin–whey Protein Interaction and Mucoadhesive Bond Strength. Colloids Surf. B: Biointerfaces. 2015, 136, 799–808. DOI: 10.1016/j.colsurfb.2015.10.016.
  • Eratte, D.; McKnight, S.; Gengenbach, T. R.; Dowling, K.; Barrow, C. J.; Adhikari, B. P. Co-encapsulation and Characterisation of Omega-3 Fatty Acids and Probiotic Bacteria in Whey Protein Isolate–gum Arabic Complex Coacervates. J. Funct. Foods. 2015, 19, 882–892. DOI: 10.1016/j.jff.2015.01.037.
  • Zhang, W.; Chen, J.; Chen, Y.; Xia, W.; Xiong, Y. L.; Wang, H. Enhanced Physicochemical Properties of Chitosan/whey Protein Isolate Composite Film by Sodium Laurate-modified TiO2 Nanoparticles. Carbohydr. Polym. 2016, 138, 59–65. DOI: 10.1016/j.carbpol.2015.11.031.
  • Pérez‐Gago, M.; Nadaud, P.; Krochta, J. Water Vapor Permeability, Solubility, and Tensile Properties of Heat‐denatured versus Native Whey Protein Films. J. Food Sci. 1999, 64, 1034–1037. DOI: 10.1111/j.1365-2621.1999.tb12276.x.
  • Reid, A. A.; Vuillemard, J. C.; Britten, M.; Arcand, Y.; Farnworth, E.; Champagne, C. P. Microentrapment of Probiotic Bacteria in a Ca2+-Induced Whey Protein Gel and Effects on Their Viability in a Dynamic Gastro-intestinal Model. J. Microencapsul. 2005, 22, 603–619. DOI: 10.1080/02652040500162840.
  • Singh, V. K.; et al. Bigels, in Polymeric Gels. Elsevier: Amsterdam, 2018; p. 265–282.
  • Aljaeid, B. M.; Hosny, K. M. Miconazole-loaded Solid Lipid Nanoparticles: formulation and Evaluation of a Novel Formula with High Bioavailability and Antifungal Activity. Int. J. Nanomed. 2016, 11, 441.
  • Maharana, V.; Gaur, D.; Nayak, S. K.; Singh, V. K.; Chakraborty, S.; Banerjee, I.; Ray, S. S.; Anis, A.; Pal, K. Reinforcing the Inner Phase of the Filled Hydrogels with CNTs Alters Drug Release Properties and Human Keratinocyte Morphology: A Study on the Gelatin-tamarind Gum Filled Hydrogels. J. Mech. Behav. Biomed. Mat. 2017, 75, 538–548. DOI: 10.1016/j.jmbbm.2017.08.026.
  • Sharma, V.; Patnaik, P.; Senthilguru, K.; Nayak, S. K.; Syed, I.; Singh, V. K.; Sarkar, P.; Thakur, G.; Pal, K. Preparation and Characterization of Novel Tamarind Gum-based Hydrogels for Antimicrobial Drug Delivery Applications. Chem. Pap. 2018, 72, 1–13.
  • Singh, V. K.; Pal, K.; Pradhan, D. K.; Pramanik, K. Castor Oil and Sorbitan Monopalmitate Based Organogel as a Probable Matrix for Controlled Drug Delivery. J. Appl. Polym. Sci. 2013, 130, 1503–1515. DOI: 10.1002/app.39315.
  • Singh, V. K.; Anis, A.; Al-Zahrani, S. M.; Pradhan, D. K.; Pal, K. FTIR, electrochemical Impedance and Iontophoretic Delivery Analysis of Guar Gum and Sesame Oil Based Bigels. Int. J. Electrochem. Sci. 2014, 9, 5640–5650.
  • Rout, S. K.; Hussian, A.; Lee, J. S.; Kim, I. W.; Woo, S. I. Impedance Spectroscopy and Morphology of SrBi4Ti4O15 Ceramics Prepared by Soft Chemical Method. J. Alloy. Compd. 2009, 477, 706–711. DOI: 10.1016/j.jallcom.2008.10.125.
  • Yadollahi, M.; Farhoudian, S.; Namazi, H. One-pot Synthesis of Antibacterial Chitosan/silver Bio-nanocomposite Hydrogel Beads as Drug Delivery Systems. Int. J. Biol. Macromol. 2015, 79, 37–43. DOI: 10.1016/j.ijbiomac.2015.04.032.
  • Klindt-Toldam, S.; Larsen, S. K.; Saaby, L.; Olsen, L. R.; Svenstrup, G.; Müllertz, A.; Knøchel, S.; Heimdal, H.; Nielsen, D. S.; Zielińska, D.; et al. Survival of Lactobacillus acidophilus NCFM® and Bifidobacterium lactis HN019 Encapsulated in Chocolate during In Vitro Simulated Passage of the Upper Gastrointestinal Tract. LWT-Food Sci. Technol. 2016, 74, 404–410. DOI: 10.1016/j.lwt.2016.07.053.
  • Papagianni, M.; Anastasiadou, S. Encapsulation of Pediococcus acidilactici Cells in Corn and Olive Oil Microcapsules Emulsified by Peptides and Stabilized with Xanthan in Oil-in-water Emulsions: studies on Cell Viability under Gastro-intestinal Simulating Conditions. Enzyme Microb. Technol. 2009, 45, 514–522. DOI: 10.1016/j.enzmictec.2009.06.007.
  • Ghotra, B. S.; Dyal, S. D.; Narine, S. S. Lipid Shortenings: A Review. Food Res. Int. 2002, 35, 1015–1048. DOI: 10.1016/S0963-9969(02)00163-1.
  • Sullo, A.; Arellano, M.; Norton, I. T. Formulation Engineering of Water in Cocoa–Butter Emulsion. J. Food Eng. 2014, 142, 100–110. DOI: 10.1016/j.jfoodeng.2014.05.025.
  • Foley, J.; O'Connell, C. Comparative Emulsifying Properties of Sodium Caseinate and Whey Protein Isolate in 18% oil in Aqueous Systems. J. Dairy Res. 1990, 57, 377–391. DOI: 10.1017/S0022029900027035.
  • Pérez‐Gago, M.; Krochta, J. Water Vapor Permeability of Whey Protein Emulsion Films as Affected by pH. J. Food Sci. 1999, 64, 695–698. DOI: 10.1111/j.1365-2621.1999.tb15112.x.
  • Sagiri, S. S.; Sharma, V.; Basak, P.; Pal, K. Mango Butter Emulsion Gels as Cocoa Butter Equivalents: physical, thermal, and Mechanical Analyses. J. Agric. Food Chem. 2014, 62, 11357–11368. DOI: 10.1021/jf502658y.
  • Di Bari, V.; Norton, J.; Norton, I. Effect of Processing on the Microstructural Properties of Water-in-cocoa Butter Emulsions. J. Food Eng. 2014, 122, 8–14. DOI: 10.1016/j.jfoodeng.2013.08.036.
  • Pawlik, A.; Kurukji, D.; Norton, I.; Spyropoulos, F. Food-grade Pickering Emulsions Stabilised with Solid Lipid Particles. Food Funct. 2016, 7, 2712–2721 DOI: 10.1039/C6FO00238B.
  • Norton, J.; Fryer, P. Investigation of Changes in Formulation and Processing Parameters on the Physical Properties of Cocoa Butter Emulsions. J. Food Eng. 2012, 113, 329–336. DOI: 10.1016/j.jfoodeng.2012.05.025.
  • Zhao, Q.; Jiang, L.; Lian, Z.; Khoshdel, E.; Schumm, S.; Huang, J.; Zhang, Q. High Internal Phase Water-in-oil Emulsions Stabilized by Food-grade Starch. J. Colloid Interface Sci. 2019, 534, 542–548. DOI: 10.1016/j.jcis.2018.09.058.
  • Fuller, G. T.; Considine, T.; Golding, M.; Matia-Merino, L.; MacGibbon, A. Aggregation Behavior of Partially Crystalline Oil-in-water Emulsions: Part II – Effect of Solid Fat Content and Interfacial Film Composition on Quiescent and Shear Stability. Food Hydrocoll. 2015, 51, 23–32. DOI: 10.1016/j.foodhyd.2015.03.032.
  • Le Révérend, B. J. D.; Fryer, P. J.; Coles, S.; Bakalis, S. A Method to Qualify and Quantify the Crystalline State of Cocoa Butter in Industrial Chocolate. J. Am. Oil Chem. Soc. 2010, 87, 239–246. DOI: 10.1007/s11746-009-1498-9.
  • Uvanesh, K.; Sagiri, S. S.; Banerjee, I.; Shaikh, H.; Pramanik, K.; Anis, A.; Pal, K. Effect of Tween 20 on the Properties of Stearate Oleogels: an in‐Depth Analysis. J. Am. Oil Chem. Soc. 2016, 93, 711–719. DOI: 10.1007/s11746-016-2810-0.
  • Relkin, P.; Ait-Taleb, A.; Sourdet, S.; Fosseux, P.-Y. Thermal Behavior of Fat Droplets as Related to Adsorbed Milk Proteins in Complex Food Emulsions. A DSC Study. J. Amer. Oil Chem. Soc. 2003, 80, 741–746. DOI: 10.1007/s11746-003-0766-1.
  • Defernez, M.; Wilson, R. H. Mid‐infrared Spectroscopy and Chemometrics for Determining the Type of Fruit Used in Jam. J. Sci. Food Agric. 1995, 67, 461–467. DOI: 10.1002/jsfa.2740670407.
  • Man, Y. C.; Syahariza, Z. A.; Mirghani, M. E. S.; Jinap, S.; Bakar, S. Analysis of Potential Lard Adulteration in Chocolate and Chocolate Products Using Fourier Transform Infrared Spectroscopy. Food Chem. 2005, 90, 815–819.
  • Krog, N. Functions of Emulsifiers in Food Systems. J. Amer. Oil Chem. Soc. 1977, 54, 124–131. DOI: 10.1007/BF02894388.
  • Yadav, I.; Shaw, G. S.; Nayak, S. K.; Banerjee, I.; Shaikh, H.; Al-Zahrani, S. M.; Anis, A.; Pal, K. Gelatin and Amylopectin-based Phase-separated Hydrogels: An in-depth Analysis of the Swelling, mechanical, electrical and Drug Release Properties. Iran. Polym. J. 2016, 25, 799–810. DOI: 10.1007/s13726-016-0468-y.
  • Heuchel, M.; Cui, J.; Kratz, K.; Kosmella, H.; Lendlein, A. Relaxation Based Modeling of Tunable Shape Recovery Kinetics Observed under Isothermal Conditions for Amorphous Shape-memory Polymers. Polymer. 2010, 51, 6212–6218. DOI: 10.1016/j.polymer.2010.10.051.
  • Herak, D.; Kabutey, A.; Choteborsky, R.; Petru, M.; Sigalingging, R. Mathematical Models Describing the Relaxation Behaviour of Jatropha Curcas L. bulk Seeds under Axial Compression. Biosyst. Eng. 2015, 131, 77–83. DOI: 10.1016/j.biosystemseng.2015.01.004.
  • Bellido, G. G; Hatcher, D. W. Asian Noodles: revisiting Peleg’s Analysis for Presenting Stress Relaxation Data in Soft Solid Foods. J. Food Eng. 2009, 92, 29–36. DOI: 10.1016/j.jfoodeng.2008.10.016.
  • Maria, H. J.; Lyczko, N.; Nzihou, A.; Joseph, K.; Mathew, C.; Thomas, S. Stress Relaxation Behavior of Organically Modified Montmorillonite Filled Natural Rubber/nitrile Rubber Nanocomposites. Appl. Clay Sci. 2014, 87, 120–128. DOI: 10.1016/j.clay.2013.10.019.
  • Abdul Halim, H. A; Selamat, J.; Mirhosseini, S. H.; Hussain, N. Sensory Preference and Bloom Stability of Chocolate Containing Cocoa Butter Substitute from Coconut Oil. J. Saudi Soc. Agric. Sci. 2018, 1–6. DOI: 10.1016/j.jssas.2018.02.005.
  • Mallick, S. P.; Sagiri, S. S.; Singh, V. K.; Behera, B.; Thirugnanam, A.; Pradhan, D. K.; Bhattacharya, M. K.; Pal, K. Genipin-Crosslinked Gelatin-Based Emulgels: An Insight into the Thermal, Mechanical, and Electrical Studies. AAPS PharmSciTech. 2015, 16, 1254–1262. DOI: 10.1208/s12249-014-0260-2.
  • Possemiers, S.; Marzorati, M.; Verstraete, W.; Van de Wiele, T. Bacteria and Chocolate: a Successful Combination for Probiotic Delivery. Int. J. Food Microbiol. 2010, 141, 97–103. DOI: 10.1016/j.ijfoodmicro.2010.03.008.
  • Konar, N.; Palabiyik, I.; Toker, O. S.; Polat, D. G.; Kelleci, E.; Pirouzian, H. R.; Akcicek, A.; Sagdic, O. Conventional and Sugar-free Probiotic White Chocolate: Effect of Inulin DP on Various Quality Properties and Viability of Probiotics. J. Funct. Foods. 2018, 43, 206–213. DOI: 10.1016/j.jff.2018.02.016.
  • Nambiar, R. B.; Sellamuthu, P. S.; Perumal, A. B. Development of Milk Chocolate Supplemented with Microencapsulated Lactobacillus plantarum HM47 and to Determine the Safety in a Swiss Albino Mice Model. Food Control. 2018, 94, 300–306. DOI: 10.1016/j.foodcont.2018.07.024.
  • Pedroso, D. L.; Dogenski, M.; Thomazini, M.; Heinemann, R. J. B.; Favaro-Trindade, C. S. Microencapsulation of Bifidobacterium animalis Subsp. lactis and Lactobacillus acidophilus in Cocoa Butter Using Spray Chilling Technology. Braz. J. Microbiol. 2013, 44, 777–783. DOI: 10.1590/S1517-83822013000300017.
  • Eor, J. Y.; Tan, P. L.; Lim, S. M.; Choi, D. H.; Yoon, S. M.; Yang, S. Y.; Kim, S. H. Laxative Effect of Probiotic Chocolate on Loperamide-induced Constipation in Rats. Food Res Int. 2019, 116, 1173–1182. DOI: 10.1016/j.foodres.2018.09.062
  • Doherty, S. B.; Gee, V. L.; Ross, R. P.; Stanton, C.; Fitzgerald, G. F.; Brodkorb, A. Development and Characterisation of Whey Protein Micro-beads as Potential Matrices for Probiotic Protection. Food Hydrocoll. 2011, 25, 1604–1617. DOI: 10.1016/j.foodhyd.2010.12.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.