274
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis, surface active properties and applications of cationic gemini surfactants from triethylenetetramine

&
Pages 450-460 | Received 06 Sep 2018, Accepted 10 Feb 2019, Published online: 02 Apr 2019

References

  • Hofer, R.; Bigorra, J. Green chemistry—a sustainable solution for industrial specialties applications. Green Chem. 2007, 9, 203–212. DOI:10.1039/B606377B.
  • Surface active agents-a global strategic business report. Global Industry Analyst, Inc. 2010.
  • McKenzie, D. A. Nonionic Surfactants. J. Am. Oil Chem. Soc. 1978, 55, 93–97. DOI:10.1007/BF02673396.
  • Bajpai, D.; Tyagi, E. V. K. Microwave Synthesis of Cationic Fatty Imidazolines and Their Characterization. J. Surfact. Deterg. 2008, 11, 79–87. DOI:10.1007/s11743-007-1057-z.
  • Ramachandran, S.; Jovancicevic, V. Molecular Modeling of the Inhibition of Mild Steel Carbon Dioxide Corrosion by Imidazolines. Corrosion. 1999, 55, 259–267. DOI:10.5006/1.3283986.
  • Baltork, M.; Alibeik, M. A. Microwave-Assisted Facile and Convenient Synthesis of Imidazolines. Bull Korean Chem. Soc. 2003, 24, 1354–1356.
  • Han, L.; Chen, H.; Luo, P. Viscosity Behavior of Cationic Gemini Surfactants with Long Alkyl Chains. Surf. Sci. Ser. 2004, 564, 141–148. DOI:10.1016/j.susc.2004.06.172.
  • Aggarwal, R.; Singh, S.; Hundal, G. Synthesis, Characterization, and Evaluation of Surface Properties of Cyclohexanoxycarbonyl methyl pyridinium and Cyclohexanoxycarbonyl methyl imidazolium Ionic Liquids. Ind. Eng. Chem. Res. 2013, 52, 1179–1189. DOI:10.1021/ie3020473.
  • Aggarwal, R.; Singh, S. Synthesis, Characterization, and Evaluation of Surface Properties of Cyclohexyloxyoxoethyl bipyridinium Gemini Amphiphiles, and a Comparison with Single-Tailed Amphiphiles. Ind. Eng. Chem. Res. 2014, 53, 2549–2557. DOI:10.1021/ie402943k.
  • Kanjilal, S.; Sunitha, S.; Reddy, P. S.; Kumar, K. P.; Murty, U. S. N.; Prasad, R. B. N. Synthesis and Evaluation of Micellar Properties and Antimicrobial Activities of Imidazole-based Surfactants. Eur. J. Lipid Sci. Technol. 2009, 111, 941–948. DOI:10.1002/ejlt.200800292.
  • Heakal, E. T.; Deyab, M. A.; Osman, M. M.; Nessim, M. I.; Elkholy, A. E. Synthesis and assessment of new cationic gemini surfactants as inhibitors for carbon steel corrosion in oilfield water. J. RSC Adv. 2017, 7, 47335–47352. DOI:10.1039/C7RA07176K.
  • Butler, R. N.; Thornton, J. D.; Moynihan, P. Reaction of fatty acids with amines. Part 3. thermal reactions of oleic and elaidic acids (cis- and trans-octadec-9-enoic acids) with some 1,2-diamines: ready reversibility of imidazoline formation. J. Chem. Res. 1981, 34, 84–85.
  • Gawali, I. T.; Mali, P.; Usmani, G. A. 4, 5-Dihydroimidazoline Based Non-Ionic Gemini Surfactants: Synthesis, Physicochemical Properties and Anticorrosion Behaviour in 1N H2SO4 Aqueous Solution. Res. J. Recent Sci. 2016, 5, 39–49.
  • Wicks, Z. W.; Zones, F. N.; Pappas, S. P. In Organic Coatings: Science and Technology. 1st ed.; Wiley Interscience: New York, 1992; Vol. 1.
  • Ming, Z.; Jinzhou, Z.; Xingqi, H. Synthesis of Bis[N, N0-(alkylamideethyl) ethyl] triethylenediamine bromide surfactants and their oilfield application investigation. J. Surfact. Deterg. 2012, 15, 309–315. DOI:10.1007/s11743-011-1313-0.
  • El-Dib, F. I.; Ghiuba, F. M.; Mahmoud, S. A.; El Awady, M. Y. Synthesis and Surface Properties Activity of Novel Monoester Triethanolamine-Based Cationic Gemini Surfactants. J. Disp. Sci. Technol. 2011, 32, 1200–1205. DOI:10.1080/01932691.2010.505527.
  • Ming, Z.; Ze, Z.; Diaoyang, X.; Jinzhou, Z. Synthesis of Three Gemini Betaine Surfactants and Their Surface Active Properties. J. Taiwan Institute Chem. Eng. 2017, 74, 1–7. DOI:10.1016/j.jtice.2016.10.012.
  • Perez, L.; Pinazo, A.; Rosen, M. J.; Infante, M. R. Surface Activity Properties at Equilibrium of Novel Gemini Cationic Amphiphilic Compounds from Arginine, Bis(Args). Langmuir. 1998, 14, 2307–2315. DOI:10.1021/la971135u.
  • Xu, R. F.; Xu, H. J.; Xu, H.; Geng, H.; Chen, L. Synthesis and properties of 4,40-di(n-tetradactyl) diphenylmethane disulfate salt. Apply Chem. Ind. 2012, 41, 317–320.
  • McCutecheon, J. W. Synthetic Detergents. New York: McNair-Dorland’s, 1950.
  • Zhu, Y. P.; Masuyama, A.; Okahara, M. Preparation and Surface Active Properties of Amphipathic Compounds with Two Sulfate Groups and Two Lipophilic Alkyl Chains. J. Am. Oil Chem. Soc. 1990, 67, 459–463. DOI:10.1007/BF02638962.
  • Jorgensen, J. H.; Turnidge, J. D. Manual of Clinical Microbiology. Susceptibility Test Methods: Dilution and Disk Diffusion Methods, 9th ed.; Murray P. R., Baron E. J., Jorgensen J. H., Landry M. L. and Pfaller M. A., Eds.; ASM Press: Washington, 2007; pp 1152–1172.
  • El-Sadek, B. M. Synthesis, Micellization and Hemolysis Evaluation of Biodegradable quaternary Ammonium Compounds. Adv. Appl. Sci. Res. 2011, 2, 363–372.
  • Petre, E. T.; Richard, R. E.; David A. Gayle K. M.; Felix, H. O. Biodegradable surfactants derived from corn starch. JAOCS. 1974, 51, 486–449.
  • Fouda, A. S.; Elewady, Y. A.; Abd-El-Aziz, H. K. Corrosion Inhibition of Carbon Steel by Cationic Surfactants in 0.5M HCl Solution. J. Chem. Sci. Technol. 2012, 1, 45–53.
  • Patial, P.; Shaheen, A.; Ahmad, I. Synthesis, Characterisation and Evalution of the Surface Active Properties of Novel Cationic Imidazolium Gemini Surfactant. J. Surfact. Deterg. 2013, 17, 253–260. DOI:10.1007/s11743-013-1472-2.
  • El-Sadek, B. M. Synthesis of Selected Gemini Surfactants: Surface, Biological Activity and Corrosion Efficiency Against Hydrochloric Acid Medium. Der Chemica Sinica. 2011, 2, 125–137.
  • Ziyafaddin, H. A.; Ahmed, H. T.; Ilhama, A. Z.; Ravan, A. R.; Gulnara, A. A. Surfactants Based on Palmitic Acid and Nitrogenous Bases for Removing Thin Oil Slicks from Water Surface. Surface Chem. J. 2012, 2, 136–145.
  • Xin, L.; Zhiyong, H.; Hailin, Z.; Duanlin, C. Synthesis and Properties of Novel Alkyl Sulfonates Gemini Surfactants. J. Surfact. Deterg. 2010, 13, 353–359. DOI:10.1007/s11743-010-1188-5.
  • Ya, Z.; Yongshen, X.; Shouji, Q.; Lei, Y. Synthesis and Properties of Mono or Double Long–Chain Alkanolamine Surfactants. J. Surfact. Deterg. 2013, 16, 841–848.
  • Finch, J. A.; Smith, G. W. Contact Angle and Wetting. Minerals Sci. Engg. 1979, 1, 36–63.
  • Zhaoyun, D.; Aiyou, H. Synthesis and Surface Properties of Novel Cationic Gemini Surfactants. J. Dispersion Sci. Technol. 2010, 31, 338–342. DOI:10.1080/01932690903192580.
  • Ware, A. M.; Waghmare, J. T.; Momin, S. A. Alkylpolyglycoside: Carbohydrate Based Surfactant. J. Dispersion Sci. Technol. 2007, 28, 437–444. DOI:10.1080/01932690601107807.
  • Drave, C. Z. Evalution of wetting agents. Am. Dystuff Rep. 1939, 28, 425–428.
  • Quinn, P. Special applications for wetting agents. Golf Course Manag. 1993, 61, 30.
  • Mulligan, C. N.; Young, R. N.; Gibbs, B. F. Surfactant enhanced remediation of contaminated soil: a review. Eng. Geol. 2001, 60, 38.
  • Wang, H. J.; Chen, K. M. Preparation and Surface Activity of Biodegradable Polymeric Surfactants. I. Preparation and Surface Activity of Dextrin Derivatives. J. Appl. Polym. Sci. 2005, 98, 711. DOI:10.1002/app.21914.
  • Hong, W. R.; Keng, C. M. Preparation and surface active properties of biodegradable dextrin derivative surfactants. Physiocochem. Eng. Aspects. 2006, 28, 190–193.
  • Salah, M. T.; Ali, A. A.; Ismail, A. Three gemini cationic surfactants as biodegradable corrosion inhibitors for carbon steel in HCl solution. Res. Chem. Intermed. 2016, 2, 1101–1123.
  • Urszula, L.; Kazimiera, A.; Wilk, I. M.; Ludwik, S. Novel Glucose Derived Gemini Surfactants with a 1,1’-Ethylenebisurea Spacer: Preparation, Thermotropic Behaviour and Biological Properties. J. Surfact. Deterg. 2006, 9, 115–124.
  • Tundo, P.; Anastas, P.; Black, D. S. C.; Breen, J.; Collins, T. J.; Memoli, S.; Miyamoto, J.; Polyakoff, M.; Tumas, W. Synthetic Pathways and Processes in Green Chemistry. Introductory Overview. Pure Apply. Chem. 2000, 72, 1207. DOI:10.1351/pac200072071207.
  • Sheng, Z.; Lijing, G.; Linlin, Z. Synthesis and Properties of a New Piperazine-Based Bicaudate Gemini Surfactant. J. Dispersion Sci. Technol. 2011, 33, 960–964.
  • Salah, M. T. Synthesis, surface, biological activity and mixed micellar phase properties of some biodegradable gemini cationic surfactants containing oxycarbonyl groups in the lipophilic part. J. Industrial Eng. Chem. 2015, 28, 171–183.
  • Macrcelo, C. M.; Victoria, G. S.; Jose, D. C.; Ricardo, J. G. Synthesis, Surface-Active Properties, and Antimicrobial Activities of New Double-Chain Gemini Surfactants. J. Ole. Sci. 2008, 57, 301–308.
  • WanLin, W.; Michael, L. F. Prediction and measurement of corrosion inhibition of mild steel using nonionic surfactants in chloride media. Corrosion Sci. 2004, 46, 2601–2611.
  • Salah, M. T. Simple one step synthesis of gemini cationic surfactant-based ionic liquids: Physicochemical, surface properties and biological activity. J. Molecular Liquids. 2015, 209, 320–326.
  • Branzoi, V.; Branzoi, F.; Baibarac, M. The Inhibition of the Corrosion of Armco Iron in HCl Solutions in the Presence of Surfactants of the Type of N-alkyl Quaternary Ammonium Salts. Mater. Chem. Phys. 2000, 65, 288–297. DOI:10.1016/S0254-0584(00)00260-1.
  • El-Tabei, A. S.; Hegazy, M. A. Synthesis and Characterization of a Novel Nonionic Gemini Surfactant as Corrosion Inhibitor for Carbon Steel in Acidic Solution. Chemical Eng. Commun. 2015, 202, 851–863. DOI:10.1080/00986445.2013.867260.
  • Xinkuai, H.; Yumei, J.; Chen, L.; Luye, W. Inhibition properties and adsorption behavior of imidazole and 2-phenyl-2-imidazoline on AA5052 in 1.0 M HCl solution. Corros. Sci. 2014, 83, 124–136.
  • Atkin, R.; Craig, V. S. J.; Wanless, E. J.; Biggs, S. The Influence of Chain Length and Electrolyte on the Adsorption Kinetics of Cationic Surfactants at the Silica-aqueous Solution Interface. J. Colloid Interface Sci. 2003, 266, 236–244. DOI:10.1016/S0021-9797(03)00631-3.
  • Tang, L. B.; Mu, G. N.; Liu, G. H. The Effect of Neutral Red on the Corrosion Inhibition of Cold Rolled Steel in 1.0 M Hydrochloric Acid. Corros. Sci. 2003, 45, 2251–2262. DOI:10.1016/S0010-938X(03)00046-5.
  • Manjula, P.; Manonmani, S.; Jayaram, P.; Rajendran, S. Corrosion Behaviour of Carbon Steel in the Presence of N‐cetyl‐N,N,N‐trimethylammonium Bromide, Zn 2+ and Calcium Gluconate. Anti-Corrosion Meth. Material. 2001, 48, 319–324. DOI:10.1108/EUM0000000005883.
  • Wang, Y.; Han, D.; Li, D.; Cao, Z. A Complex Imidazoline Corrosion Inhibitor in Hydrochloric Acid Solutions for Refinery and Petrochemical Plant Equipment. J Petroleum Sci. Technol. 2009, 27, 1836–1844. DOI:10.1080/10916460802564722.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.