557
Views
12
CrossRef citations to date
0
Altmetric
Original Articles

Effect of surface topology on the wettability of superhydrophobic surfaces

&
Pages 470-478 | Received 30 Nov 2018, Accepted 17 Feb 2019, Published online: 11 Mar 2019

References

  • Wang, N.; Tang, L.; Cai, Y.; Tong, W.; Xiong, D. Scalable Superhydrophobic Coating with Controllable Wettability and Investigations of Its Drag Reduction. Colloids Surf. A. 2018, 555, 290–295. DOI:10.1016/j.colsurfa.2018.07.011.
  • Dubov, A. L.; Nizkaya, T. V.; Asmolov, E. S.; Vinogradova, O. I. Boundary Conditions at the Gas Sectors of Superhydrophobic Grooves. Phys. Rev. Fluids 2018, 3, 1–12. DOI:10.1103/PhysRevFluids.3.014002.
  • Fu, M. K.; Arenas, I.; Leonardi, S.; Hultmark, M. Liquid-Infused Surfaces as a Passive Method of Turbulent Drag Reduction. J. Fluid Mech. 2017, 824, 688–700. DOI:10.1017/jfm.2017.360.
  • Lv, C.; Zhang, X.; Niu, F.; He, F.; Hao, P. From Initial Nucleation to Cassie-Baxter State of Condensed Droplets on Nanotextured Superhydrophobic Surfaces. Sci. Rep. 2017, 7, 1–10. DOI:10.1038/srep42752.
  • Oberli, L.; Caruso, D.; Hall, C.; Fabretto, M.; Murphy, P. J.; Evans, D. Condensation and Freezing of Droplets on Superhydrophobic Surfaces. Adv. Colloid Interface Sci. 2014, 210, 47–57. DOI:10.1016/j.cis.2013.10.018.
  • Zhan, Y. L.; Ruan, M.; Li, W.; Li, H.; Hu, L. Y.; Ma, F. M.; Yu, Z. L.; Feng, W. Fabrication of Anisotropic PTFE Superhydrophobic Surfaces Using Laser Microprocessing and Their Self-Cleaning and anti-Icing Behavior. Colloids Surf. A 2017, 535, 8–15. DOI:10.1016/j.colsurfa.2017.09.018.
  • Chavan, S.; Cha, H.; Orejon, D.; Nawaz, K.; Singla, N.; Yeung, Y. F.; Park, D.; Kang, D. H.; Chang, Y.; Takata, Y. Heat Transfer through a Condensate Droplet on Hydrophobic and Nanostructured Superhydrophobic Surfaces. Langmuir 2016, 32, 7774–7787. DOI:10.1021/acs.langmuir.6b01903.
  • Lu, M. C.; Lin, C. C.; Lo, C. W.; Huang, C. W.; Wang, C. C. Superhydrophobic Si Nanowires for Enhanced Condensation Heat Transfer. Int. J. Heat Mass Transf. 2017, 111, 614–623. DOI:10.1016/j.ijheatmasstransfer.2017.04.021.
  • Khatir, Z.; Kubiak, K. J.; Jimack, P. K.; Mathia, T. G. Dropwise Condensation Heat Transfer Process Optimisation on Superhydrophobic Surfaces Using a Multi-Disciplinary Approach. Appl. Therm. Eng. 2016, 106, 1337–1344. DOI:10.1016/j.applthermaleng.2016.06.128.
  • Sun, J.; Li, X.; Song, J.; Huang, L.; Liu, X.; Liu, J.; Zhang, Z.; Zhao, C. Water Strider-Inspired Design of a Water Walking Robot Using Superhydrophobic Al Surface. J. Dispers. Sci. Technol. 2018, 39, 1840–1847. DOI:10.1080/01932691.2018.1462199.
  • Bellanger, H.; Darmanin, T.; Taffin De Givenchy, E.; Guittard, F. Chemical and Physical Pathways for the Preparation of Superoleophobic Surfaces and Related Wetting Theories. Chem. Rev. 2014, 114, 2694–2716. DOI:10.1021/cr400169m.
  • Jiang, T.; Guo, Z.; Liu, W. Biomimetic Superoleophobic Surfaces: Focusing on Their Fabrication and Applications. J. Mater. Chem. A. 2015, 3, 1811–1827. DOI:10.1039/C4TA05582A.
  • Zhao, H.; Park, K.-C.; Law, K.-Y. Effect of Surface Texturing on Superoleophobicity, Contact Angle Hysteresis, and “Robustness. Langmuir. 2012, 28, 14925–14934. DOI:10.1021/la302765t.
  • Leslie, D. C.; Waterhouse, A.; Berthet, J. B.; Valentin, T. M.; Watters, A. L.; Jain, A.; Kim, P.; Hatton, B. D.; Nedder, A.; Donovan, K.; et al. A Bioinspired Omniphobic Surface Coating on Medical Devices Prevents Thrombosis and Biofouling. Nat. Biotechnol. 2014, 32, 1134–1140. DOI:10.1038/nbt.3020.
  • Falde, E. J.; Yohe, S. T.; Colson, Y. L.; Grinstaff, M. W. Superhydrophobic Materials for Biomedical Applications. Biomaterials 2016, 104, 87–103. DOI:10.1016/j.biomaterials.2016.06.050.
  • Yan, Y. Y.; Gao, N.; Barthlott, W. Mimicking Natural Superhydrophobic Surfaces and Grasping the Wetting Process: A Review on Recent Progress in Preparing Superhydrophobic Surfaces. Adv. Colloid Interface Sci. 2011, 169, 80–105. DOI:10.1016/j.cis.2011.08.005.
  • Shirtcliffe, N. J.; McHale, G.; Atherton, S.; Newton, M. I. An Introduction to Superhydrophobicity. Adv. Colloid Interface Sci. 2010, 161, 124–138. DOI:10.1016/j.cis.2009.11.001.
  • Liang, C.; Li, B.; Wang, H.; Li, B.; Yang, J.; Zhou, L.; Li, H.; Wang, X.; Li, C. Preparation of Hydrophobic and Oleophilic Surface of 316 L Stainless Steel by Femtosecond Laser Irradiation in Water. J. Dispers. Sci. Technol. 2014, 35, 1345–1350. DOI:10.1080/01932691.2013.838900.
  • Ji, H.; Chen, G.; Hu, J.; Wang, M.; Min, C.; Zhao, Y. Biomimetic Superhydrophobic Surfaces. J. Dispers. Sci. Technol. 2013, 34, 1–21. DOI:10.1080/01932691.2011.646625.
  • Liang, W.; He, L.; Wang, F.; Yang, B.; Wang, Z. A 3-D Model for Thermodynamic Analysis of Hierarchical Structured Superhydrophobic Surfaces. Colloids Surf. A. 2017, 523, 98–105. DOI:10.1016/j.colsurfa.2017.04.001.
  • Wenzel, R. N. Resistance of Solid Surfaces to Wetting by Water. Ind. Eng. Chem. 1936, 28, 988–994. DOI:10.1021/ie50320a024.
  • Cassie, A. B. D.; Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 1944, 5, 546–551. DOI:10.1039/tf9444000546.
  • Whyman, G.; Bormashenko, E. How to Make the Cassie Wetting State Stable? Langmuir 2011, 27, 8171–8176. DOI:10.1021/la2011869.
  • Yildirim Erbil, H.; Elif Cansoy, C. Range of Applicability of the Wenzel and Cassie-Baxter Equations for Superhydrophobic Surfaces. Langmuir 2009, 25, 14135–14145. DOI:10.1021/la902098a.
  • Cansoy, C. E.; Erbil, H. Y.; Akar, O.; Akin, T. Colloids and Surfaces A: Physicochemical and Engineering Aspects Effect of Pattern Size and Geometry on the Use of Cassie – Baxter Equation for Superhydrophobic Surfaces. Colloids Surf. A. Physicochem. Eng. Asp. 2011, 386, 116–124. DOI:10.1016/j.colsurfa.2011.07.005.
  • Dupuis, A.; Yeomans, J. M. Modeling Droplets on Superhydrophobic Surfaces: Equilibrium States and Transitions. Langmuir 2005, 21, 2624–2629. DOI:10.1021/la047348i.
  • Zu, Y. Q.; Yan, Y. Y.; Li, J. Q.; Han, Z. W. Wetting Behaviours of a Single Droplet on Biomimetic Micro Structured Surfaces. J. Bionic Eng. 2010, 7, 191–198. DOI:10.1016/S1672-6529(09)60202-X.
  • Zu, Y. Q.; Yan, Y. Y. Single Droplet on Micro Square-Post Patterned Surfaces-Theoretical Model and Numerical Simulation. Sci. Rep. 2016, 6, 1–12. DOI:10.1038/srep19281.
  • Gong, W.; Yan, Y.; Chen, S.; Giddings, D. Numerical Study of Wetting Transitions on Biomimetic Surfaces Using a Lattice Boltzmann Approach with Large Density Ratio. J. Bionic Eng. 2017, 14, 486–496. DOI:10.1016/S1672-6529(16)60414-6.
  • Zhang, B.; Lei, Q.; Wang, Z.; Zhang, X. Droplets Can Rebound toward Both Directions on Textured Surfaces with a Wettability Gradient. Langmuir 2016, 32, 346–351. DOI:10.1021/acs.langmuir.5b04365.
  • Zhang, R.; Farokhirad, S.; Lee, T.; Koplik, J. Multiscale Liquid Drop Impact on Wettable and Textured Surfaces. Phys. Fluids. 2014, 26, 082003. DOI:10.1063/1.4892083.
  • Hirvi, J. T.; Pakkanen, T. A. Nanodroplet Impact and Sliding on Structured Polymer Surfaces. Surf. Sci. 2008, 602, 1810–1818. DOI:10.1016/j.susc.2008.03.020.
  • Savoy, E. S.; Escobedo, F. A. Molecular Simulations of Wetting of a Rough Surface by an Oily Fluid: Effect of Topology, Chemistry, and Droplet Size on Wetting Transition Rates. Langmuir 2012, 28, 3412–3419. DOI:10.1021/la203921h.
  • Chatain, D.; Lewis, D.; Baland, J. P.; Carter, W. C. Numerical Analysis of the Shapes and Energies of Droplets on Micropatterned Substrates. Langmuir 2006, 22, 4237–4243. DOI:10.1021/la053146q.
  • Hao, J. H.; Wang, Z. J. Modeling Cassie–Baxter State on Superhydrophobic Surfaces. J. Dispers. Sci. Technol. 2016, 37, 1208–1213. DOI:10.1080/01932691.2015.1089407.
  • Goswami, A.; Rahman, M. A. Numerical Study of Energetics and Wetting Stability of Liquid Droplets on Microtextured Surfaces. Colloid Polym. Sci. 2017, 295, 1787–1796. DOI:10.1007/s00396-017-4158-x.
  • Aziz, H.; Amrei, M. M.; Dotivala, A.; Tang, C.; Tafreshi, H. V. Modeling Cassie Droplets on Superhydrophobic Coatings with Orthogonal Fibrous Structures. Colloids Surf. A. Physicochem. Eng. Asp. 2017, 512, 61–70. DOI:10.1016/j.colsurfa.2016.10.031.
  • Bhushan, B.; Chae Jung, Y. Wetting Study of Patterned Surfaces for Superhydrophobicity. Ultramicroscopy 2007, 107, 1033–1041. DOI:10.1016/j.ultramic.2007.05.002.
  • Merlen, A.; Brunet, P. Impact of Drops on Non-Wetting Biomimetic Surfaces. J. Bionic Eng. 2009, 6, 330–334. DOI:10.1016/S1672-6529(08)60141-9.
  • Park, C. I.; Jeong, H. E.; Lee, S. H.; Cho, H. S.; Suh, K. Y. Wetting Transition and Optimal Design for Microstructured Surfaces with Hydrophobic and Hydrophilic Materials. J. Colloid Interface Sci. 2009, 336, 298–303. DOI:10.1016/j.jcis.2009.04.022.
  • Boreyko, J. B.; Baker, C. H.; Poley, C. R.; Chen, C. H. Wetting and Dewetting Transitions on Hierarchical Superhydrophobic Surfaces. Langmuir 2011, 27, 7502–7509. DOI:10.1021/la201587u.
  • Zhao, H.; Law, K. Y.; Sambhy, V. Fabrication, Surface Properties, and Origin of Superoleophobicity for a Model Textured Surface. Langmuir 2011, 27, 5927–5935. DOI:10.1021/la104872q.
  • Li, K.; Zeng, X.; Li, H.; Lai, X.; Ye, C.; Xie, H. Study on the Wetting Behavior and Theoretical Models of Polydimethylsiloxane/Silica Coating. Appl. Surf. Sci. 2013, 279, 458–463. DOI:10.1016/j.apsusc.2013.04.137.
  • Murakami, D.; Jinnai, H.; Takahara, A. Wetting Transition from the Cassie-Baxter State to the Wenzel State on Textured Polymer Surfaces. Langmuir 2014, 30, 2061–2067. DOI:10.1021/la4049067.
  • Khalif, T.; Budakl, M.; Ar, M. An Experimental and Analytical Study on the in Fl Uence of Superhydrophobic Micro-Textured Surfaces on Liquid Wetting Phenomena. Colloids Surf. A. 2018, 555, 191–200. DOI:10.1016/j.colsurfa.2018.06.084.
  • Brakke, K. A. The Surface Evolver. Exp. Math. 1992, 1, 141–165. DOI:10.1080/10586458.1992.10504253.
  • Neumann, A. W. Contact Angles on Hydrophobic Solid Surfaces and Their Interpretation. 1992, 148, 190–200.
  • Hrncír, E.; Rosina, J. Surface Tension of Blood. Physiol. Res. 1997, 46, 319–321. DOI: 10.1007/978-3-540-75508-1.
  • Hoshian, S.; Kankuri, E.; Ras, R. H. A.; Franssila, S.; Jokinen, V. Water and Blood Repellent Flexible Tubes. Sci. Rep. 2017, 7, 1–8. DOI:10.1038/s41598-017-16369-3.
  • Pitts, K. L.; Abu-Mallouh, S.; Fenech, M. Contact Angle Study of Blood Dilutions on Common Microchip Materials. J. Mech. Behav. Biomed. Mater. 2013, 17, 333–336. DOI:10.1016/j.jmbbm.2012.07.007.
  • Liu, J. L.; Feng, X. Q.; Wang, G.; Yu, S. W. Mechanisms of Superhydrophobicity on Hydrophilic Substrates. J. Phys. Condens. Matter. 2007, 19, 356002. DOI:10.1088/0953-8984/19/35/356002.
  • Bormashenko, E. Progress in Understanding Wetting Transitions on Rough Surfaces. Adv. Colloid Interface Sci. 2015, 222, 92–103. DOI:10.1016/j.cis.2014.02.009.
  • Darmanin, T.; Guittard, F. Wettability of Conducting Polymers: From Superhydrophilicity to Superoleophobicity. Prog. Polym. Sci. 2014, 39, 656–682. DOI:10.1016/j.progpolymsci.2013.10.003.
  • Valipour, N. M.; Birjandi, F. C.; Sargolzaei, J. Colloids and Surfaces A: Physicochemical and Engineering Aspects Super-Non-Wettable Surfaces: A Review. Colloids Surf. A. Physicochem. Eng. Asp. 2014, 448, 93–106. DOI:10.1016/j.colsurfa.2014.02.016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.