722
Views
26
CrossRef citations to date
0
Altmetric
Original Articles

Solubility and stability enhancement of curcumin in Soluplus® polymeric micelles: a spectroscopic study

, , , & ORCID Icon
Pages 523-536 | Received 24 Aug 2018, Accepted 03 Nov 2018, Published online: 03 Apr 2019

References

  • Goel, A.; Kunnumakkara, A. B.; Aggarwal, B. B. Curcumin as “Curecumin”: From Kitchen to Clinic. Biochem. Pharmacol. 2008, 75, 787–809. DOI:10.1016/j.bcp.2007.08.016.
  • Samim, M.; Naqvi, S.; Arora, I.; Ahmad, F. J.; Maitra, A. Antileishmanial Activity of Nanocurcumin. Ther. Deliv. 2011, 2, 223–230. DOI:10.4155/tde.10.113.
  • Anand, P.; Sundaram, C.; Jhurani, S.; Kunnumakkara, A. B.; Aggarwal, B. B. Curcumin and Cancer: An “Old-Age” Disease with an “Age-Old” Solution. Cancer Lett. 2008, 267, 133–164. DOI:10.1016/j.canlet.2008.03.025.
  • Chakraborti, S.; Das, L.; Kapoor, N.; Das, A.; Dwivedi, V.; Poddar, A.; Chakraborti, G.; Janik, M.; Basu, G.; Panda, D.; et al. Curcumin Recognizes a Unique Binding Site of Tubulin. J. Med. Chem. 2011, 54, 6183–6196. DOI:10.1021/jm2004046.
  • Anand, P.; Thomas, S. G.; Kunnumakkara, A. B.; Sundaram, C.; Harikumar, K. B.; Sung, B.; Tharakan, S. T.; Misra, K.; Priyadarsini, I. K.; Rajasekharan, K. N.; Aggarwal, B. B. Biological Activities of Curcumin and Its Analogues (Congeners) Made by Man and Mother Nature. Biochem. Pharmacol. 2008, 76, 1590–1611. DOI:10.1016/j.bcp.2008.08.008.
  • Awasthi, S.; Srivatava, S. K.; Piper, J. T.; Singhal, S. S.; Chaubey, M.; Awasthi, Y. C. Curcumin Protects against 4-Hydroxy-2-Trans-Nonenal-Induced Cataract Formation in Rat Lenses. Am. J. Clin. Nutr. 1996, 64, 761–766. DOI:10.1093/ajcn/64.5.761.
  • Asai, A.; Miyazawa, T. Dietary Curcuminoids Prevent High-Fat Diet–Induced Lipid Accumulation in Rat Liver and Epididymal Adipose Tissue. J. Nutr. 2001, 131, 2932–2935. DOI:10.1093/jn/131.11.2932.
  • Hussain, M.; Chandrasekhara, N. Biliary Proteins from Hepatic Bile of Rats Fed Curcumin or Capsaicin Inhibit Cholesterol Crystal Nucleation in Supersaturated Model Bile. Indian J. Biochem. Biophys. 1994, 31, 407–412.
  • Soni, K.; Kuttan, R. Effect of Oral Curcumin Administration on Serum Peroxides and Cholesterol Levels in Human Volunteers. Indian J. Physiol. Pharmacol. 1992, 36, 273–273.
  • Naidu, K. A.; Thippeswamy, N. Inhibition of Human Low Density Lipoprotein Oxidation by Active Principles from Spices. Mol. Cell. Biochem. 2002, 229, 19–23. DOI:10.1023/A:1017930708099.
  • Patro, B. S.; Rele, S.; Chintalwar, G. J.; Chattopadhyay, S.; Adhikari, S.; Mukherjee, T. Protective Activities of Some Phenolic 1, 3‐Diketones against Lipid Peroxidation: Possible Involvement of the 1, 3‐Diketone Moiety. Chembiochem 2002, 3, 364–370. DOI:10.1002/1439-7633(20020402)3:4<364::AID-CBIC364>3.0.CO;2-S.
  • Srivastava, R.; Puri, V.; Srimal, R.; Dhawan, B. Effect of Curcumin on Platelet Aggregation and Vascular Prostacyclin Synthesis. Arzneimittelforschung 1986, 36, 715–717.
  • Srivastava, R.; Dikshit, M.; Srimal, R.; Dhawan, B. Anti-Thrombotic Effect of Curcumin. Thromb. Res. 1985, 40, 413–417. DOI:10.1016/0049-3848(85)90276-2.
  • Venkatesan, N. Curcumin Attenuation of Acute Adriamycin Myocardial Toxicity in Rats. Br. J. Pharmacol. 1998, 124, 425–427. DOI:10.1038/sj.bjp.0701877.
  • Babu, P. S.; Srinivasan, K. Influence of Dietary Curcumin and Cholesterol on the Progression of Experimentally Induced Diabetes in Albino Rat. Mol. Cell. Biochem. 1995, 152, 13–21.
  • Dcodhar, S.; Sethi, R.; Srimal, R. Preliminary Study on Antirheumatic Activity of Curcumin (Diferuloyl Methane). Indian J. Med. Res. 2013, 138, 632–634.
  • Mazumder, A.; Raghavan, K.; Weinstein, J.; Kohn, K. W.; Pommier, Y. Inhibition of Human Immunodeficiency Virus Type-1 Integrase by Curcumin. Biochem. Pharmacol. 1995, 49, 1165–1170. DOI:10.1016/0006-2952(95)98514-A.
  • Mazumder, A.; Neamati, N.; Sunder, S.; Schulz, J.; Pertz, H.; Eich, E.; Pommier, Y. Curcumin Analogs with Altered Potencies against HIV-1 Integrase as Probes for Biochemical Mechanisms of Drug Action. J. Med. Chem. 1997, 40, 3057–3063. DOI:10.1021/jm970190x.
  • Sidhu, G. S.; Mani, H.; Gaddipati, J. P.; Singh, A. K.; Seth, P.; Banaudha, K. K.; Patnaik, G. K.; Maheshwari, R. K. Curcumin Enhances Wound Healing in Streptozotocin Induced Diabetic Rats and Genetically Diabetic Mice. Wound Repair. Regen. 1999, 7, 362–374. DOI:10.1046/j.1524-475X.1999.00362.x.
  • Gopinath, D.; Ahmed, M. R.; Gomathi, K.; Chitra, K.; Sehgal, P.; Jayakumar, R. Dermal Wound Healing Processes with Curcumin Incorporated Collagen Films. Biomaterials 2004, 25, 1911–1917. DOI:10.1016/S0142-9612(03)00625-2.
  • Phan, T.-T.; See, P.; Lee, S.-T.; Chan, S.-Y. Protective Effects of Curcumin against Oxidative Damage on Skin Cells in Vitro: its Implication for Wound Healing. J. Trauma Acute Care Surg 2001, 51, 927–931. DOI:10.1097/00005373-200111000-00017.
  • Perrone, D.; Ardito, F.; Giannatempo, G.; Dioguardi, M.; Troiano, G.; Lo Russo, L.; De Lillo, A.; Laino, L.; Lo Muzio, L. Biological and Therapeutic Activities, and Anticancer Properties of Curcumin. Exp. Therapeut. Med. 2015, 10, 1615–1623. DOI:10.3892/etm.2015.2749.
  • Setthacheewakul, S.; Mahattanadul, S.; Phadoongsombut, N.; Pichayakorn, W.; Wiwattanapatapee, R. Development and Evaluation of Self-Microemulsifying Liquid and Pellet Formulations of Curcumin, and Absorption Studies in Rats. Eur. J. Pharm. Biopharm. 2010, 76, 475–485. DOI:10.1016/j.ejpb.2010.07.011.
  • Shankar, T. B.; Shantha, N.; Ramesh, H.; Murthy, I. A.; Murthy, V. S. Toxicity Studies on Turmeric (Curcuma Longa): Acute Toxicity Studies in Rats, Guineapigs and Monkeys. Indian J. Exp. Biol. 1980, 18, 73–75.
  • Lao, C. D.; Ruffin, M. T.; Normolle, D.; Heath, D. D.; Murray, S. I.; Bailey, J. M.; Boggs, M. E.; Crowell, J.; Rock, C. L.; Brenner, D. E. Dose Escalation of a Curcuminoid Formulation. BMC Complement Altern. Med. 2006, 6, 10. DOI:10.1186/1472-6882-6-10.
  • Cheng, A. L.; Hsu, C. H.; Lin, J. K.; Hsu, M. M.; Ho, Y. F.; Shen, T. S.; Ko, J. Y.; Lin, J. T.; Lin, B. R.; Ming-Shiang, W.; et al. Phase I Clinical Trial of Curcumin, a Chemopreventive Agent, in Patients with High-Risk or Pre-Malignant Lesions. Anticancer Res. 2001, 21, 2895–2900.
  • Shoba, G.; Joy, D.; Joseph, T.; Majeed, M.; Rajendran, R.; Srinivas, P. Influence of Piperine on the Pharmacokinetics of Curcumin in Animals and Human Volunteers. Planta Med. 1998, 64, 353–356. DOI:10.1055/s-2006-957450.
  • Rachmawati, H.; Shaal, L. A.; Müller, R. H.; Keck, C. M. Development of Curcumin Nanocrystal: physical Aspects. J. Pharm. Sci. 2013, 102, 204–214. DOI:10.1002/jps.23335.
  • Payton, F.; Sandusky, P.; Alworth, W. L. NMR Study of the Solution Structure of Curcumin. J. Nat. Prod. 2007, 70, 143–146. DOI:10.1021/np060263s.
  • Shen, L.; Ji, H.-F. Theoretical Study on Physicochemical Properties of Curcumin. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007, 67, 619–623. DOI:10.1016/j.saa.2006.08.018.
  • Formosinho, S. J.; Arnaut, L. G. Excited-State Proton Transfer Reactions II. Intramolecular Reactions. J. Photochem. Photobiol. A Chem. 1993, 75, 21–48. DOI:10.1016/1010-6030(93)80158-6.
  • Arnaut, L. G.; Formosinho, S. J. Excited-State Proton Transfer Reactions I. Fundamentals and Intermolecular Reactions. J. Photochem. Photobiol. A Chem. 1993, 75, 1–20. DOI:10.1016/1010-6030(93)80157-5.
  • Bong, P. H. Spectral and Photophysical Behaviors of Curcumin and Curcuminoids. Bull. Korean Chem. Soc. 2000, 21, 81–86.
  • Ghatak, C.; Rao, V. G.; Mandal, S.; Ghosh, S.; Sarkar, N. An Understanding of the Modulation of Photophysical Properties of Curcumin inside a Micelle Formed by an Ionic Liquid: A New Possibility of Tunable Drug Delivery System. J. Phys. Chem. B 2012, 116, 3369–3379. DOI:10.1021/jp211242c.
  • Wang, Y.-J.; Pan, M.-H.; Cheng, A.-L.; Lin, L.-I.; Ho, Y.-S.; Hsieh, C.-Y.; Lin, J.-K. Stability of Curcumin in Buffer Solutions and Characterization of Its Degradation Products. J. Pharm. Biomed. Anal. 1997, 15, 1867–1876. DOI:10.1016/S0731-7085(96)02024-9.
  • Price, L. C.; Buescher, R. Kinetics of Alkaline Degradation of the Food Pigments Curcumin and Curcuminoids. J. Food Sci. 1997, 62, 267–269. DOI:10.1111/j.1365-2621.1997.tb03982.x.
  • Yu, H.; Huang, Q. Enhanced in Vitro anti-Cancer Activity of Curcumin Encapsulated in Hydrophobically Modified Starch. Food Chem. 2010, 119, 669–674. DOI:10.1016/j.foodchem.2009.07.018.
  • Zhao, L.; Du, J.; Duan, Y.; Zang, Y. n.; Zhang, H.; Yang, C.; Cao, F.; Zhai, G. Curcumin Loaded Mixed Micelles Composed of Pluronic P123 and F68: Preparation, Optimization and in Vitro Characterization. Colloids Surf. B Biointerfaces 2012, 97, 101–108. DOI:10.1016/j.colsurfb.2012.04.017.
  • Onoue, S.; Takahashi, H.; Kawabata, Y.; Seto, Y.; Hatanaka, J.; Timmermann, B.; Yamada, S. Formulation Design and Photochemical Studies on Nanocrystal Solid Dispersion of Curcumin with Improved Oral Bioavailability. J. Pharm. Sci. 2010, 99, 1871–1881. DOI:10.1002/jps.21964.
  • Kunwar, A.; Barik, A.; Pandey, R.; Priyadarsini, K. I. Transport of Liposomal and Albumin Loaded Curcumin to Living Cells: An Absorption and Fluorescence Spectroscopic Study. Biochim. Biophys. Acta 2006, 1760, 1513–1520. DOI:10.1016/j.bbagen.2006.06.012.
  • Chen, Y.; Wu, Q.; Zhang, Z.; Yuan, L.; Liu, X.; Zhou, L. Preparation of Curcumin-Loaded Liposomes and Evaluation of Their Skin Permeation and Pharmacodynamics. Molecules 2012, 17, 5972–5987. DOI:10.3390/molecules17055972.
  • Kumar, S. S. D.; Mahesh, A.; Mahadevan, S.; Mandal, A. B. Synthesis and Characterization of Curcumin Loaded Polymer/Lipid Based Nanoparticles and Evaluation of Their Antitumor Effects on MCF-7 Cells. Biochim. Biophys. Acta 2014, 1840, 1913–1922. DOI:10.1016/j.bbagen.2014.01.016.
  • Sou, K.; Inenaga, S.; Takeoka, S.; Tsuchida, E. Loading of Curcumin into Macrophages Using Lipid-Based Nanoparticles. Int. J. Pharm. 2008, 352, 287–293. DOI:10.1016/j.ijpharm.2007.10.033.
  • Altunbas, A.; Lee, S. J.; Rajasekaran, S. A.; Schneider, J. P.; Pochan, D. J. Encapsulation of Curcumin in Self-Assembling Peptide Hydrogels as Injectable Drug Delivery Vehicles. Biomaterials 2011, 32, 5906–5914. DOI:10.1016/j.biomaterials.2011.04.069.
  • Ke, D.; Wu, Y.; Wang, X. Shift of Acid–Base Equilibrium of Curcumin in Its Complexes with Gemini Surfactant Hexamethylene-1, 6-Bis-(Dodecyldimethyl Ammonium Bromide). Colloids Surf. A Physicochem. Eng. Asp. 2014, 443, 481–487. DOI:10.1016/j.colsurfa.2013.12.012.
  • Ke, D.; Wang, X.; Yang, Q.; Niu, Y.; Chai, S.; Chen, Z.; An, X.; Shen, W. Spectrometric Study on the Interaction of Dodecyltrimethylammonium Bromide with Curcumin. Langmuir 2011, 27, 14112–14117. DOI:10.1021/la203592j.
  • Wang, F.; Wu, X.; Wang, F.; Liu, S.; Jia, Z.; Yang, J. The Sensitive Fluorimetric Method for the Determination of Curcumin Using the Enhancement of Mixed Micelle. J. Fluoresc. 2006, 16, 53–59. DOI:10.1007/s10895-005-0025-0.
  • Banerjee, C.; Maiti, S.; Mustafi, M.; Kuchlyan, J.; Banik, D.; Kundu, N.; Dhara, D.; Sarkar, N. Effect of Encapsulation of Curcumin in Polymeric Nanoparticles: how Efficient to Control ESIPT Process? Langmuir 2014, 30, 10834–10844. DOI:10.1021/la5023533.
  • Ghosh, S.; Kuchlyan, J.; Banik, D.; Kundu, N.; Roy, A.; Banerjee, C.; Sarkar, N. Organic Additive, 5-Methylsalicylic Acid Induces Spontaneous Structural Transformation of Aqueous Pluronic Triblock Copolymer Solution: A Spectroscopic Investigation of Interaction of Curcumin with Pluronic Micellar and Vesicular Aggregates. J. Phys. Chem. B 2014, 118, 11437–11448. DOI:10.1021/jp507378w.
  • Anand, P.; Nair, H. B.; Sung, B.; Kunnumakkara, A. B.; Yadav, V. R.; Tekmal, R. R.; Aggarwal, B. B. RETRACTED: Design of Curcumin-Loaded PLGA Nanoparticles Formulation with Enhanced Cellular Uptake, and Increased Bioactivity in Vitro and Superior Bioavailability in Vivo; Elsevier, 2010, 79, 330–338. DOI:10.1016/j.bcp.2009.09.003.
  • Yallapu, M. M.; Jaggi, M.; Chauhan, S. C. Curcumin Nanoformulations: A Future Nanomedicine for Cancer. Drug Discov. Today. 2012, 17, 71–80. DOI:10.1016/j.drudis.2011.09.009.
  • Gou, M.; Men, K.; Shi, H.; Xiang, MLi.; Zhang, J.; Song, J.; Long, J.; Wan, Y.; Luo, F.; Zhao, X.; Qian, Z. Curcumin-Loaded Biodegradable Polymeric Micelles for Colon Cancer Therapy in Vitro and in Vivo. Nanoscale 2011, 3, 1558–1567. DOI:10.1039/c0nr00758g.
  • Naksuriya, O.; Shi, Y.; Van Nostrum, C. F.; Anuchapreeda, S.; Hennink, W. E.; Okonogi, S. HPMA-Based Polymeric Micelles for Curcumin Solubilization and Inhibition of Cancer Cell Growth. Eur. J. Pharm. Biopharm. 2015, 94, 501–512. DOI:10.1016/j.ejpb.2015.06.010.
  • Naksuriya, O.; van Steenbergen, M. J.; Torano, J. S.; Okonogi, S.; Hennink, W. E. A Kinetic Degradation Study of Curcumin in Its Free Form and Loaded in Polymeric Micelles. Aaps J. 2016, 18, 777–787. DOI:10.1208/s12248-015-9863-0.
  • Hahn, L.; Lübtow, M. M.; Lorson, T.; Schmitt, F.; Appelt-Menzel, A.; Schobert, R.; Luxenhofer, R. Investigating the Influence of Aromatic Moieties on the Formulation of Hydrophobic Natural Products and Drugs in Poly (2-Oxazoline) Based Amphiphiles. Biomacromolecules 2018, 19, 3119–3128. DOI:10.1021/acs.biomac.8b00708.
  • Lübtow, M. M.; Hahn, L.; Haider, M. S.; Luxenhofer, R. Drug Specificity, Synergy and Antagonism in Ultrahigh Capacity Poly(2-oxazoline)/Poly(2-oxazine) based Formulations. J. Am. Chem. Soc. 2017, 139, 10980–10983. DOI:10.1021/jacs.7b05376.
  • Gao, M.; Chen, C.; Fan, A.; Zhang, J.; Kong, D.; Wang, Z.; Zhao, Y. Covalent and Non-Covalent Curcumin Loading in Acid-Responsive Polymeric Micellar Nanocarriers. Nanotechnology 2015, 26, 275101. DOI:10.1088/0957-4484/26/27/275101.
  • Li, H.; Li, M.; Chen, C.; Fan, A.; Kong, D.; Wang, Z.; Zhao, Y. On-Demand Combinational Delivery of Curcumin and Doxorubicin via a pH-Labile Micellar Nanocarrier. Int. J. Pharm. 2015, 495, 572–578. DOI:10.1016/j.ijpharm.2015.09.022.
  • Li, M.; Gao, M.; Fu, Y.; Chen, C.; Meng, X.; Fan, A.; Kong, D.; Wang, Z.; Zhao, Y. Acetal-Linked Polymeric Prodrug Micelles for Enhanced Curcumin Delivery. Colloids Surf. B Biointerfaces 2016, 140, 11–18. DOI:10.1016/j.colsurfb.2015.12.025.
  • Hevus, I.; Modgil, A.; Daniels, J.; Kohut, A.; Sun, C.; Stafslien, S.; Voronov, A. Invertible Micellar Polymer Assemblies for Delivery of Poorly Water-Soluble Drugs. Biomacromolecules 2012, 13, 2537–2545. DOI:10.1021/bm3007924.
  • Mogal, S.; Gurjar, P.; Yamgar, D.; Kamod, A. Solid Dispersion Technique for Improving Solubility of Some Poorly Soluble Drugs. Pharm. Lett. 2012, 4, 1574–1586.
  • Bodratti, A. M.; Alexandridis, P. Formulation of Poloxamers for Drug Delivery. J. Funct. Biomater. 2018, 9, 11. DOI:10.3390/jfb9010011.
  • Zhang, X.; Jackson, J. K.; Burt, H. M. Development of Amphiphilic Diblock Copolymers as Micellar Carriers of Taxol. Int. J. Pharm. 1996, 132, 195–206. DOI:10.1016/0378-5173(95)04386-1.
  • Hardung, H.; Djuric, D.; Ali, S. Combining HME & Solubilization: Soluplus®—the Solid Solution. Drug Deliv. Technol. 2010, 10, 320–327.
  • Wang, L.-L.; He, D.-D.; Wang, S.-X.; Dai, Y.-H.; Ju, J.-M.; Zhao, C.-L. Preparation and Evaluation of Curcumin-Loaded Self-Assembled Micelles. Drug Dev. Ind. Pharm. 2018, 44, 563–569. DOI:10.1080/03639045.2017.1405431.
  • Dian, L.; Yu, E.; Chen, X.; Wen, X.; Zhang, Z.; Qin, L.; Wang, Q.; Li, G.; Wu, C. Enhancing Oral Bioavailability of Quercetin Using Novel Soluplus Polymeric Micelles. Nanoscale Res. Lett. 2014, 9, 684. DOI:10.1186/1556-276X-9-684.
  • Bernabeu, E.; Gonzalez, L.; Cagel, M.; Gergic, E. P.; Moretton, M. A.; Chiappetta, D. A. Novel Soluplus®—TPGS Mixed Micelles for Encapsulation of Paclitaxel with Enhanced in Vitro Cytotoxicity on Breast and Ovarian Cancer Cell Lines. Colloids Surf. B Biointerfaces 2016, 140, 403–411. DOI:10.1016/j.colsurfb.2016.01.003.
  • Xia, D.; Yu, H.; Tao, J.; Zeng, J.; Zhu, Q.; Zhu, C.; Gan, Y. Supersaturated Polymeric Micelles for Oral Cyclosporine a Delivery: The Role of Soluplus–Sodium Dodecyl Sulfate Complex. Colloids Surf. B Biointerfaces 2016, 141, 301–310. DOI:10.1016/j.colsurfb.2016.01.047.
  • Yu, H.; Xia, D.; Zhu, Q.; Zhu, C.; Chen, D.; Gan, Y. Supersaturated Polymeric Micelles for Oral Cyclosporine a Delivery. Eur. J. Pharm. Biopharm. 2013, 85, 1325–1336. DOI:10.1016/j.ejpb.2013.08.003.
  • Ji, S.; Lin, X.; Yu, E.; Dian, C.; Yan, X.; Li, L.; Zhang, M.; Zhao, W.; Dian, L. Curcumin-Loaded Mixed Micelles: Preparation, Characterization, and in Vitro Antitumor Activity. J. Nanotechnol. 2018, 2018, 1. DOI:10.1155/2018/9103120.
  • Wang, J.; Wang, L.; Zhang, L.; He, D.; Ju, J.; Li, W. Studies on the Curcumin Phospholipid Complex Solidified with Soluplus®. J. Pharm. Pharmacol. 2018, 70, 242–249. DOI:10.1111/jphp.12857.
  • Djuris, J.; Nikolakakis, I.; Ibric, S.; Djuric, Z.; Kachrimanis, K. Preparation of Carbamazepine–Soluplus® Solid Dispersions by Hot-Melt Extrusion, and Prediction of Drug–Polymer Miscibility by Thermodynamic Model Fitting. Eur. J. Pharm. Biopharm. 2013, 84, 228–237. DOI:10.1016/j.ejpb.2012.12.018.
  • Nagy, Z. K.; Balogh, A.; Vajna, B.; Farkas, A.; Patyi, G.; Kramarics, Á.; Marosi, G. Comparison of Electrospun and Extruded Soluplus®-Based Solid Dosage Forms of Improved Dissolution. J. Pharm. Sci. 2012, 101, 322–332. DOI:10.1002/jps.22731.
  • Priyadarsini, K. I. The Chemistry of Curcumin: From Extraction to Therapeutic Agent. Molecules 2014, 19, 20091–20112. DOI:10.3390/molecules191220091.
  • Osmialowski, B.; Kolehmainen, E.; Nissinen, M.; Krygowski, T. M.; Gawinecki, R. (1 Z, 3 Z)-1, 4-Di (Pyridin-2-yl) Buta-1, 3-Diene-2, 3-Diol: The Planar Highly Conjugated Symmetrical Enediol with Multiple Intramolecular Hydrogen Bonds. J. Org. Chem. 2002, 67, 3339–3345. DOI:10.1021/jo016293b.
  • Banerjee, C.; Ghosh, S.; Mandal, S.; Kuchlyan, J.; Kundu, N.; Sarkar, N. Exploring the Photophysics of Curcumin in Zwitterionic Micellar System: An Approach to Control ESIPT Process in the Presence of Room Temperature Ionic Liquids (RTILs) and Anionic Surfactant. J. Phys. Chem. B 2014, 118, 3669–3681. DOI:10.1021/jp411778q.
  • Wang, Z.; Leung, M. H.; Kee, T. W.; English, D. S. The Role of Charge in the Surfactant-Assisted Stabilization of the Natural Product Curcumin. Langmuir 2010, 26, 5520–5526. DOI:10.1021/la903772e.
  • Zsila, F.; Bikádi, Z.; Simonyi, M. Molecular Basis of the Cotton Effects Induced by the Binding of Curcumin to Human Serum Albumin. Tetrahedron: Asymmetry 2003, 14, 2433–2444. DOI:10.1016/S0957-4166(03)00486-5.
  • Harada, T.; Pham, D.-T.; Leung, M. H.; Ngo, H. T.; Lincoln, S. F.; Easton, C. J.; Kee, T. W. Cooperative Binding and Stabilization of the Medicinal Pigment Curcumin by Diamide Linked γ-Cyclodextrin Dimers: A Spectroscopic Characterization. J. Phys. Chem. B 2011, 115, 1268–1274. DOI:10.1021/jp1096025.
  • Shi, Y.; van Steenbergen, M. J.; Teunissen, E. A.; Novo, L. s.; Gradmann, S.; Baldus, M.; van Nostrum, C. F.; Hennink, W. E. Π–Π Stacking Increases the Stability and Loading Capacity of Thermosensitive Polymeric Micelles for Chemotherapeutic Drugs. Biomacromolecules 2013, 14, 1826–1837. DOI:10.1021/bm400234c.
  • Kosower, E. M.; Dodiuk, H.; Tanizawa, K.; Ottolenghi, M.; Orbach, N. Intramolecular Donor-Acceptor Systems. Radiative and Nonradiative Processes for the Excited States of 2-N-Arylamino-6-Naphthalenesulfonates. J. Am. Chem. Soc. 1975, 97, 2167–2178. DOI:10.1021/ja00841a030.
  • Reichardt, C. Empirical Parameters of Solvent Polarity as Linear Free‐Energy Relationships. Angew. Chem. Int. Ed. Engl. 1979, 18, 98–110. DOI:10.1002/anie.197900981.
  • Hazra, P.; Chakrabarty, D.; Sarkar, N. Solvation Dynamics of Coumarin 153 in Aqueous and Non-Aqueous Reverse Micelles. Chem. Phys. Lett. 2003, 371, 553–562. DOI:10.1016/S0009-2614(03)00304-X.
  • Smith, T. A.; Gee, M. L. Scholes, C. A., Time-Resolved Evanescent Wave-Induced Fluorescence Anisotropy Measurements. In Reviews in Fluorescence 2005; Geddes, C. D.; Lakowicz, J. R., Eds.; Springer US: Boston, MA, 2005; pp 245–270.
  • Bernabé-Pineda, M.; Ramı́rez-Silva, M. a T.; Romero-Romo, M.; González-Vergara, E.;.; Rojas-Hernández, A. Determination of Acidity Constants of Curcumin in Aqueous Solution and Apparent Rate Constant of Its Decomposition. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2004, 60, 1091–1097. DOI:10.1016/S1386-1425(03)00342-1.
  • Zebib, B.; Mouloungui, Z.; Noirot, V. Stabilization of Curcumin by Complexation with Divalent Cations in Glycerol/Water System. Bioinorg. Chem. Appl. 2010, 2010, 1. DOI:10.1155/2010/292760.
  • Hatcher, H.; Planalp, R.; Cho, J.; Torti, F.; Torti, S. Curcumin: From Ancient Medicine to Current Clinical Trials. Cell. Mol. Life Sci. 2008, 65, 1631–1652. DOI:10.1007/s00018-008-7452-4.
  • Leung, M. H.; Colangelo, H.; Kee, T. W. Encapsulation of Curcumin in Cationic Micelles Suppresses Alkaline Hydrolysis. Langmuir 2008, 24, 5672–5675. DOI:10.1021/la800780w.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.