129
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Experimental studies on pressure drop/friction factor of CNT nanofluids flowing through helical coils and development of a new empirical correlation

, &
Pages 607-617 | Received 29 Sep 2018, Accepted 14 Apr 2019, Published online: 13 May 2019

References

  • Babita; Sharma, S. K.; Gupta, S. M. Preparation and Evaluation of Stable Nanofluids for Heat Transfer Application: A Review. Exp. Therm. Fluid Sci. 2016, 79, 202–212.
  • Babita; Sharma, S. K.; Gupta, S. M.; Kumar, A. Effect of Surfactant on CNT Dispersion in Polar Media and Thermal Conductivity of Prepared CNT Nanofluids. JEAS 2018, 13, 1202–1211.
  • Pakdaman, M. F.; Behabadi, M. A. A.; Razi, P. An Empirical Study on the Pressure Drop Characteristics of Nanofluid Flow inside Helically Coiled Tubes. Int. J. Therm. Sci. 2013, 65, 206–213. DOI: 10.1016/j.ijthermalsci.2012.10.014.
  • Wu, Z.; Wang, L.; Sunden, B. Pressure Drop and Convective Heat Transfer of Water and Nanofluids in a Double Pipe Helical Heat Exchanger. Appl. Therm. Eng. 2013, 60, 266–274. DOI: 10.1016/j.applthermaleng.2013.06.051.
  • Sharma, P.; Gupta, R.; Wanchoo, R. K. Hydrodynamics Studies on Glycol Based Al2O3 Nanofluid Flowing through Straight Tubes and Coils. Exp. Therm. Fluid Sci. 2017, 82, 19–31. DOI: 10.1016/j.expthermflusci.2016.11.001.
  • Ding, Y.; Alias, H.; Wen, D.; Williams, R. A. Heat Transfer of Aqueous Suspensions of Carbon Nanotubes (CNT Nanofluids). Int. J. Heat Mass Transfer 2006, 49, 240–250. DOI: 10.1016/j.ijheatmasstransfer.2005.07.009.
  • He, Y.; Men, Y.; Zhao, Y.; Lu, H.; Ding, Y. Numerical Investigation into the Convective Heat Transfer of TiO2 Nano-Fluids Flowing through a Straight Tube under Laminar Flow Conditions. Appl. Therm. Eng. 2009, 29, 1965–1972. DOI: 10.1016/j.applthermaleng.2008.09.020.
  • Rea, U.; McKrell, T.; Hu, L.; Buongiorno, J. Laminar Convective Heat Transfer and Viscous Pressure Loss of Alumina–Water and Zirconia–Water Nanofluids. Int. J. Heat Mass Tran 2009, 52, 2042–2048. DOI: 10.1016/j.ijheatmasstransfer.2008.10.025.
  • Garg, P.; Alvarado, J. L.; Marsh, C.; Carlson, T. A.; Kessler, D. A.; Annamalai, K. An Experimental Study on the Effect of Ultrasonication on Viscosity and Heat Transfer Performance of Multi-Wall Carbon Nanotube-Based Aqueous Nanofluids. Int. J. Heat Mass Tran 2009, 52, 5090–5101. DOI: 10.1016/j.ijheatmasstransfer.2009.04.029.
  • Behabadi, M. A. A.; Pakdaman, M. K.; Ghazvini, M. Experimental Investigation on the Convective Heat Transfer of Nanofluid Flow inside Vertical Helically Coiled Tubes under Uniform Wall Temperature Condition. Int. Commun. Heat Mass 2012, 39, 556–564. DOI: 10.1016/j.icheatmasstransfer.2012.02.008.
  • Kahani, M.; Heris, S. Z.; Mousavi, S. M. Effects of Curvature Ratio and Coil Pitch Spacing on Heat Transfer Performance of Al2O3/Water Nanofluid Laminar Flow through Helical Coils. J. Disper. Sci. Technol. 2013, 34 (12), 1703–1712.
  • Albadr, J.; Tayal, S.; Alasadi, M. Heat Transfer through Heat Exchanger Using Al2O3 Nanofluid at Different Concentrations. Case Studies Thermal Eng. 2013, 1, 38–44. DOI: 10.1016/j.csite.2013.08.004.
  • Esmaeilzadeh, E.; Almohammadi, H.; Vatan, S. N.; Omrani, A. N. Experimental Investigation of Hydrodynamics and Heat Transfer Characteristics of γ-Al2O3/Water under Laminar Flow inside a Horizontal Tube. Int. J. Therm. Sci. 2013, 63, 31–37. DOI: 10.1016/j.ijthermalsci.2012.07.001.
  • Ong, S. S.; Walvekar, R. Heat Transfer Enhancement Using CNT Nanofluids in a Turbulent Flow Heat Exchanger - An Experimental Study. EURECA 2013, 127–128. DOI: 10.1080/17458080.2015.1015461.
  • Esfe, M. H.; Saedodin, S.; Mahian, O.; Wongwises, S. Thermo-Physical Properties, Heat Transfer and Pressure Drop of COOH-Functionalized Multi Walled Carbon Nanotubes/Water Nanofluids. Int. Commun. Heat Mass Tran 2014, 58, 176–183. DOI: 10.1016/j.icheatmasstransfer.2014.08.037.
  • Halelfadl, S.; Mare, T.; Estelle, P. Efficiency of Carbon Nanotubes Water Based Nanofluids as Coolants. Exp. Therm. Fluid Sci 2014, 53, 104–110. DOI: 10.1016/j.expthermflusci.2013.11.010.
  • Walvekar, R.; Siddiqui, M. K.; Ong, S. S.; Ismail, A. F. Application of CNT Nanofluids in a Turbulent Flow Heat Exchanger. J. Exp. Nanosci 2015, 10, 1–17. DOI: 10.1080/17458080.2015.1015461.
  • Ghahdarijani, A. M.; Hormozi, F.; Asl, A. H. Application of Nano-Fluids to Heat Transfer Enhancement in Double-Walled Reactor. J Chem Eng Process Technol 2016, 7, 1–8. DOI: 10.4172/2157-7048.1000299
  • Singh, R. N.; Rajat, P.; Lav, I.; Pandey, P. K. Experimental Studies of Nanofluid TiO2/CuO in a Heat Exchanger (Double Pipe. ). Ind. J. Sci. Technol. 2016, 9, 1-6. DOI: 10.17485/ijst/2016/v9i31/93623.
  • Ahammed, N.; Asirvatham, L. G.; Wongwises, S. Thermoelectronic Cooling of Electronic Devices with Nanofluid in a Multiport Minichannel Heat Exchanger. Exp. Therm. Fluid Sci 2016, 74, 81–90. DOI: 10.1016/j.expthermflusci.2015.11.023.
  • Khairul, M. A.; Saidur, R.; Hossain, A.; Alim, M. A.; Mahbubul, I. M. Heat Transfer Performance of Different Nanofluids Flows in a Helically Coiled Heat Exchanger. Adv. Mat. Res 2014, 832, 160–165. DOI: 10.4028/www.scientific.net/AMR.832.160.
  • Ashtiani, D.; Behabadi, M. A. A.; Pakdaman, M. F. An Experimental Investigation on Heat Transfer Characteristics of Multi-Walled CNT-Heat Transfer Oil Nanofluid Flow inside Flattened Tubes under Uniform Wall Temperature Condition. Int. Commun. Heat Mass Tran 2012, 39, 1404–1409. DOI: 10.1016/j.icheatmasstransfer.2012.07.017.
  • Akbaridoust, F.; Rakhsha, M.; Abbassi, A.; Saffar-Avval, M. Experimental and Numerical Investigation of Nanofluid Heat Transfer in Helically Coiled Tubes at Constant Wall Temperature Using Dispersion Model. Int. J. Heat Mass Tran 2013, 58, 480–491. DOI: 10.1016/j.ijheatmasstransfer.2012.11.064.
  • Pantzali, M. N.; Mouza, A. A.; Paras, S. V. Investigating the Efficacy of Nanofluids as Coolants in Plate Heat Exchangers (PHE). Chem. Eng. Sci. 2009, 64, 3290–3300. DOI: 10.1016/j.ces.2009.04.004.
  • Huminic, G.; Huminic, A. Heat Transfer Characteristics in Double Tube Helical Heat Exchangers Using Nanofluids. Int. J. Heat Mass Tran 2011, 54, 4280–4287. DOI: 10.1016/j.ijheatmasstransfer.2011.05.017.
  • Sisodiya, V.; Geete, A. Heat Transfer Analysis of Helical Coil Heat Exchanger with Al2O3 Nanofluid. IRJET. 2016, 3, 366–370.
  • Seyyedvalilu, M. H.; Ranjbar, S. F. The Effect of Geometrical Parameters on Heat Transfer and Hydro Dynamical Characteristics of Helical Exchanger. IJMECH 2015, 4, 35–46.
  • Babita; Sharma, S. K.; Gupta, S. M. Hydrodynamic Studies of CNT Nanofluids in Helical Coil Heat Exchanger. Mat. Res. Exp 2017, 4, 124002.
  • Babita; Sharma, S. K.; Gupta, S. M. Synergic Effect of SDBS and GA to Prepare Stable Dispersion of CNT in Water for Industrial Heat Transfer Applications. Mater. Res. Express 2018, 5 (5), 055511.
  • Babita; Sharma, S. K.; Gupta, S. M.; Kumar, A. Modified Two-Step Method to Prepare Long-Term Stable CNT Nanofluids for Heat Transfer Applications. AJSE 2018, 43, 6155–6163.
  • Srinivasan, P. S.; Nandapurkar, S. S.; Holland, F. A. Pressure Drop and Heat Transfer in Coils. Chem. Eng 1968, 113–9.
  • Timofeeva, E. V.; Gavrilov, A. N.; McCloskey, J. M.; Tolmachev, Y. V. Thermal Conductivity and Particle Agglomeration in Alumina Nanofuids: Experiment and Theory. Phys. Rev. 2007, 76, 061203.
  • Sadri, R.; Ahmadi, G.; Togun, H.; Dahari, M.; Kazi, S. N.; Sadeghinezhad, E.; Zubir, N. An Experimental Study on Thermal Conductivity and Viscosity of Nanofluids Containing Carbon Nanotubes. Nanoscale Res. Lett. 2014, 9, 151.
  • Gupta, R.; Wanchoo, R. K.; Jafar Ali, T. R. M. Laminar Flow in Helical Coils: A Parametric Study. Ind. Eng. Chem. Res. 2011, 50, 1150–1157. DOI: 10.1021/ie101752z.
  • Ito, H. Friction Factors for Turbulent Flow in Curved Pipes. J. Basic Eng. Trans. ASME 1959, 81, 123–134.
  • Kubair, V.; Varrier, C. B. S. Pressure Drop for Liquid Flow in Helical Coils. Trans. Indian Instit. Chem. Eng 1961, 1962, 14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.