181
Views
9
CrossRef citations to date
0
Altmetric
Original Articles

Extremely slow settling behavior of particles in dilute wormlike micellar fluid with broad spectrum of relaxation times

, , , &
Pages 639-647 | Received 19 Oct 2018, Accepted 14 Apr 2019, Published online: 01 Jul 2019

References

  • Barbati, A. C.; Desroches, J.; Robisson, A.; McKinley, G. H. Complex Fluids and Hydraulic Fracturing. Annu. Rev. Chem. Biomol. Eng. 2016, 7, 415–453. DOI:10.1146/annurev-chembioeng-080615-033630.
  • Chhabra, R. P. Bubbles, Drops, and Particles in non-Newtonian Fluids; Taylor & Francis: Boca Raton, 2007.
  • Acharya, A.; Mashelkar, R.; Ulbrecht, J. Flow of Inelastic and Viscoelastic Fluids past a Sphere. Rheol. Acta 1976, 15, 454–470. DOI:10.1007/BF01530348.
  • K. Walters, R. I. T. The Motion of Sphere Falling through an Elastic Liquid. In Transport Process in Bubbles, Drops and Particles; Chhabra R.P., De Kee D., (Eds.); Hemisphere Publ.Cor.: New York, 1992.
  • Yang, J. Viscoelastic Wormlike Micelles and Their Applications. Curr. Opin. Colloid Interf. Sci. 2002, 7, 276–281. DOI:10.1016/S1359-0294(02)00071-7.
  • Malhotra, S. Settling of Spherical Particles in Unbounded and Confined Surfactant-Based Shear Thinning Viscoeslastic Fluids: An Experimental Study. Chem. Eng. Sci. 2012, 84, 10.
  • Kostrzewa, M.; Delgado, A.; Wierschem, A. Particle Settling in Micellar Solutions of Varying Concentration and Salt Content. Acta Mech. 2016, 227, 667–692.
  • Chen, S.; Rothstein, J. P. Flow of a Wormlike Micelle Solution Past a Falling Sphere. J. Non-Newtonian Fluid Mech. 2004, 116, 205–234. DOI:10.1016/j.jnnfm.2003.08.005.
  • Wang, Z.; Wang, S.; Jing, Z.; Luo, X. Viscoelastic Drag of Particles Settling in Wormlike Micellar Solutions of Varying Surfactant Concentration. J. Disp. Sci. Technol. 2016, 37, 442–449. DOI:10.1080/01932691.2015.1045597.
  • Jayaraman, A.; Belmonte, A. Oscillations of a Solid Sphere Falling Through a Wormlike Micellar Fluid. Phys. Rev. E. 2003, 67, 065301.
  • Weidman, P.; Roberts, B.; Eisen, S. On the Instability of Spheres Settling Through a Vertical Pipe Filled with HPG. J. Appl. Fluid Mech. 2012, 5, 113–121.
  • Mohammadigoushki, H.; Muller, S. J. Sedimentation of a Sphere in Wormlike Micellar Fluids. J. Rheol. 2016, 60, 587–601. DOI:10.1122/1.4948800.
  • Wu, S.; Mohammadigoushki, H. Sphere Sedimentation in Wormlike Micelles: Effect of Micellar Relaxation Spectrum and Gradients in Micellar Extensions. J. Rheol. 2018, 62, 1061–1069. DOI:10.1122/1.5031899.
  • Huang, P. Y.; Feng, J. Wall Effects on the Flow of Viscoelastic Fluids around a Circular Cylinder. J. Non-Newtonian Fluid Mech. 1995, 60, 179–198. DOI:10.1016/0377-0257(95)01394-2.
  • Anderson, V. J.; Pearson, J. R. A.; Boek, E. S. The Rheology of Worm-like Micellar Fluids. Rheology Reviews 2006, 2006, 217–253.
  • Rothstein, J. P. Strong flows of viscoelastic wormlike micelle solutions. In Rheology Reviews. The British Society of Rheology: Aberystwyth, 2008.
  • Cates, M. E.; Candau, S. J. Statics and Dynamics of Worm-like Surfactant Micelles. J. Phys.: Condens. Matter. 1990, 2, 6869–6892. DOI:10.1088/0953-8984/2/33/001.
  • Thareja, P.; Hoffmann, I. H.; Liberatore, M. W.; Helgeson, M. E.; Hu, Y. T.; Gradzielski, M.; Wagner, N. J. Shear-Induced Phase Separation (SIPS) with Shear Banding in Solutions of Cationic Surfactant and Salt. J. Rheol. 2011, 55, 1375. DOI:10.1122/1.3641517.
  • Appell, J.; Porte, G.; Khatory, A.; Kern, F.; Sauveur, J. C. Static and Dynamic Properties of a Network of Wormlike Surfactant Micelles (Cetypyridinium Chlorate in Sodium Chlorate Brine). J. Phys. B Atomic Mol. Phys. 1992, 2, 195–217.
  • Berret, J.-F. Rheology of Wormlike Micelles: Equilibrium Properties and Shear Banding Transitions. In Molecular Gels; Weiss R. G., Terech P., (Eds.); Springer: New York, 2005; pp. 235–247.
  • Bhardwaj, A.; Richter, D.; Chellamuthu, M.; Rothstein, J. P. The Effect of Pre-Shear on the Extensional Rheology of Wormlike Micelle Solutions. Rheol. Acta 2007, 46, 861–875. DOI:10.1007/s00397-007-0168-9.
  • Mitsoulis, E. Effect of Rheological Properties on the Drag Coefficient for Creeping Motion around a Sphere Falling in a Tightly-Fitting Tube. J. Non-Newtonian Fluid Mech. 1998, 74, 263–283. DOI:10.1016/S0377-0257(97)00059-1.
  • Degand, E.; Walters, K. On the Motion of a Sphere Falling through an Elastic Liquid Contained in a Tightly-Fitting Cylindrical Container. J. Non-Newtonian Fluid Mech. 1995, 57, 103–115. DOI:10.1016/0377-0257(94)01298-V.
  • Caswell, B.; Manero, O.; Mena, B. Recent Developments on the Slow Viscoelastic Flow past Spheres and Bubbles. Rheology Reviews. Br. Soc. Rheol. 2004, 2, 197.
  • Renaud, M.; Mauret, E.; Chhabra, R. P. Power-Law Fluid Flow over a Sphere: Average Shear Rate and Drag Coefficient. Can. J. Chem. Eng. 2008, 82, 1066–1070. DOI:10.1002/cjce.5450820524.
  • Acharya, A. Viscoelasticity of Crosslinked Fracturing Fluids and Proppant Transport. SPE Prod. Eng. 1988, 3, 483–488. DOI:10.2118/15937-PA.
  • Cromer, M.; Cook, L. P.; McKinley, G. H. Extensional Flow of Wormlike Micellar Solutions. Chem. Eng. Sci. 2009, 64, 4588–4596. DOI:10.1016/j.ces.2009.04.011.
  • Fielding, S. M.; Olmsted, P. D. Nonlinear Dynamics of an Interface between Shear Bands. Phys. Rev. Lett. 2006, 96, 104502–104505.
  • Zhang, Y.; Muller, S. J. Unsteady Sedimentation of a Sphere in Wormlike Micellar Fluids. Phys. Rev. Fluids 2018, 3, 04330101–04330119.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.