70
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

Quantitative Structure-Activity Relationship (QSAR) analysis of functionalized triblock copolymers with applications as dehydrating agents of crude oil

, , , , , & show all
Pages 708-716 | Received 24 Dec 2018, Accepted 14 Apr 2019, Published online: 16 May 2019

References

  • Maaref, S.; Ayatollahi, S.; Rezaei, N.; Masihi, M. The Effect of Dispersed Phase Salinity on Water-in-Oil Emulsion Flow Performance: A Micromodel Study. Ind. Eng. Chem. Res. 2017, 56, 4549–4561. DOI:10.1021/acs.iecr.7b00432.
  • Zhang, Z.; Xu, G. Y.; Wang, F.; Dong, S. L.; Li, Y. M. Of Poly(Ethylene Oxide)-Block-Poly(Propylene Oxide)-Block-Poly(Ethylene Oxide) Copolymers. J. Colloid. Interface Sci. 2004, 277, 464–470. DOI:10.1061/j.jcis.2004.04.035.
  • Abdel-Azim, A. A. A.; Zaki, N. N.; Maysour, N. E. S. Polyoxyalkylenated Amines for Breaking Water-in-Oil-Emulsions: Effect of Structural Variations on the Desemulsification Efficiency. Polym. Adv. Technol. 1998, 9, 159–166. DOI:10.1002/(SICI)1099-1581(199802)9:2 < 159::AID-PAT757 > 3.0.CO;2-K.
  • Hernández, E. I.; Castro-Sotelo, L. V.; Avendaño-Gómez, J. R.; Flores, C. A.; Alvarez-Ramírez, F.; Vázquez, F. Synthesis, Characterization, and Evaluation of Petroleum Demulsifiers of Multibranched Block Copolymers. Energy Fuels. 2016, 30, 5363–5378. DOI:10.1021/acs.energyfuels.6b00419.
  • Cendejas, G.; Arreguín, F.; Castro, L. V.; Flores, E. A.; Vazquez, F. Demulsifying Super-Heavy Crude Oil with Bifunctionalized Block Copolymers. Fuel. 2013, 103, 356–363. DOI:10.1016/j.fuel.2012.08.029.
  • Zamora, E. B.; Vázquez, F.; Hernández, E. I.; Álvarez, F.; Zavala, G.; López, F.,C. Triblock Copolymers Functionalized with Quaternary Ammonium Salts as Dehydrating Agents for Heavy and Extra-Heavy Crude Oils. J. Disper. Sci. Technol. 2018, 39, 1502–1509. DOI:10.1080/01932691.2017.1421078..
  • Khatka, A.; Nanda, A.; Kumar, P.; Narasimhan, B. Syntehsis, Antimicrobial Evaluation and QSAR Studies of Gallic Acid Derivatives. Arab. J. Chem. 2017, 10, S2870–S2880. DOI:10.016/j.arabjc.2013.11.014.
  • Verma, V.; Singh, K.; Kumar, D.; Narasimhan, B. QSAR Studies of Antimicrobial Activity of 1,3-Disubstituted-1H-Naphtho[1,2-e][1,3]Oxazines Using Topological Descriptiors. Arab. J. Chem. 2017, 10, S747–S756. DOI:10.1016/j.arabjc.2012.11.021.
  • Usman, B.; Maarof, H.; Abdallah, H. H.; Jamaludin, R.; Al-Fakih, A. M.; Aziz, M. Corrosion Inhibition Efficiency of Thiophene Derivatives on Mild Steel: A QSAR Model. Int. J. Electrochem. Sci. 2014, 9, 1678–1689.
  • Khaled, K. F.; Sherik, A. Using Neural Networks for Corrosion Inhibition Efficiency Prediction during Corrosion of Steel in Chloride Solutions. Int. J. Electrochem. Sci. 2013, 8, 9918–9935.
  • Yu-Hui, G.; Ben-Xian, S. QSAR Research of the Activity of Span Surfactants as Was Antisettling Additives for Diesel. Energy Fuels. 2006, 20, 1579–1583. DOI:10.1021/ef050414j.
  • Liu, Z.; Zhang, L.; Elkamel, A.; Liang, D.; Zhao, S.; Xu, C.; Ivanov, S. Y.; Ray, A. K. Multiobjective Feature Selection Approach to Quantitative Structure Property Relationship Models for Predicting the Octane Number of Compounds Found in Gasoline. Energy Fuels. 2017, 31, 5828–5839. DOI:10.1021/acs.energyfuels.6b03251.
  • Saldana, D. A.; Starck, L.; Mougin, P.; Rousseau, B.; Pidol, L.; Jeuland, N.; Creton, B. Flash Point and Cetane Number Predictions for Fuel Compounds Using Quantitative Structure Property Relationship (QSPR) Methods. Energy Fuels. 2011, 25, 3900–3908. DOI:10.1021/ef200795j.
  • Amin-Razbani, M. Modeling Interfacial Tension of n-Alkane/Water-Salt System Using Artificial Neural Networks. J. Disper. Sci. Technol. 2015, 36, 1665–1672. DOI:10.1080/01932691.2014.991444.
  • Abdel-Moghny, T.; Gad, E. A.; Mostafa, Y. Effect of Interfacially Active Fractions of Some Egyptian Crude Oils on Their Emulsion Stability. J. Disper. Sci. Technol. 2006, 27, 133–141. DOI:10.1080/01932690500240006.
  • Flores-Sandoval, C. A.; Castro, L. V.; Flores, E. A.; Alvarez, F.; García-Murillo, A.; López, A.; Hernández-Cortez, J. G.; Vázquez, F. S. Experimental and Theoretical Study of Bifuctionalized PEO-PPO-PEO Triblock Copolymers with Applications as Dehydrating Agents for Heavy Crude Oil. Arab. J. Chem. 2017, 10, 410–419. DOI:10.1016/j.arabjc.2014.01.021.
  • Flores-Oropeza, E. A.; Flores-Sandoval, C. A.; Reyes-Martínez, R.; Hernández-Cortez, J. G.; López-Ortega, A.; Castro-Sotelo, L. V.; Alvarez-Ramírez, F.; Estrada, A.; Vázquez, F. S. (2014.) U.S. Patent 20140238900.
  • Castro, L. V.; Vazquez, F. Fractionation and Characterization of Mexican Crude Oils. Energy Fuels. 2009, 23, 1603–1609. DOI:10.1021/ef8008508.
  • ASTM Standard D-287. Standard Test Method for Density, Relative Density, or API Gravity of Crude Petroleum and Liquid Petroleum Products by Hydrometer Method; ASTM International, West Conshohocken, PA, 2006.
  • ASTM Standard D-3230. Standard Test Method for Salts in Crude Oil (Electrometric Method); ASTM International, West Conshohocken, PA, 2006.
  • ASTM Standard D-4006. Standard Test Method for Water in Crude Oil by Distillation; ASTM International, West Conshohocken, PA, 2006.
  • ASTM Standard D-445. Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity); ASTM International, West Conshohocken, PA, 2006.
  • ASTM Standard D-97. Standard Test Method for Pour Point of Petroleum Products; ASTM International, West Conshohocken, PA, 2006.
  • Parr, R. G.; Donnelly, R. A.; Levy, M.; Palke, W. E. Electronegativity: The Density Functional Viewpoint. J. Chem. Phys. 1978, 68, 3801–3807. DOI:10.1063/1.436185.
  • Parr, R. G.; Pearson, R. G. Absolute Hardness: Companion Parameter to Absolute Electronegativity. J. Am. Chem. Soc. 1983, 105, 7512–7516. DOI:10.1021/ja00364a005.
  • Koopmans, T. C. Über Die Zuordnung Von Wellenfunktionen Und Eigenwerten zu Den Einzelnen Elektronen Eines Atoms. Physica. 1934, 1, 104–113. DOI:10.1016/S0031-8914(34)90011-2.
  • Spss is a statistical software of SPSS Inc. USA.
  • Golbraikh, A.; Tropsha, A. Beware of q2! J. Mol. Graph. Model. 2002, 20, 269–276. DOI:10.1016/S1093-3263(01)00123-1.
  • Chirico, N.; Gramatica, P. Real External Predictivity of QSAR Models. Part 2. New Intercomparable Thresholds for Different Validation Criteria and the Need for Scatter Plot Inspection. J. Chem. Inf. Model. 2012, 52, 2044–2058. DOI:10.1021/ci300084j.
  • Chirico, N.; Gramatica, P. Real External Predictivity of QSAR Models: How to Evaluate It? Comparison of Different Validation Criteria and Proposal of Using the Concordance Correlation Coefficient. J. Chem. Inf. Model. 2011, 51, 2320–2335. DOI:10.1021/ci200211n.
  • Shi, L. M.; Fang, H.; Tong, W.; Wu, J.; Perkins, R.; Blair, R. M.; Branham, W. S.; Dial, S. L.; Moland, C. L.; Sheehan, D. M. QSAR Models Using a Large Diverse Set of Estrogens. J. Chem. Inf. Comput. Sci. 2001, 41, 186–195. DOI:10.1021/ci000066d.
  • Schüürmann, G.; Ebert, R.; Chen, J.; Wang, B.; Kühne, R. External Validation and Prediction Employing the Predictive Squared Correlation Coefficients Test Set Activity Mean vs Training Set Activity Mean. J. Chem. Inf. Model. 2008, 48, 2140–2145. DOI:10.1021/ci800253u.
  • Consonni, V.; Ballabio, D.; Todeschini, R. Comments on the Definition of the Q2 Parameter for QSAR Validation. J. Chem. Inf. Model. 2009, 49, 1669–1678. DOI:10.1021/ci900115y.
  • Consonni, V.; Ballabio, D.; Todeschini, R. Evaluation of Model Predictive Ability by External Validation Techniques. J. Chemometrics. 2010, 24, 194–201. DOI:10.1002/cem.1290.
  • Roy, P. P.; Roy, K. On Some Aspects of Variable Selection for Partial Least Squares Regression Models. QSAR Comb. Sci. 2008, 27, 302–313. DOI:10.1002/qsar.200710043.
  • Lin, L. I. A Concordance Correlation Coefficient to Evaluate Reproducibility. Biometrics. 1989, 45, 255–268. DOI:10.2307/2532051.
  • Lin, L. I. Assay Validation Using the Concordance Correlation Coefficient. Biometrics. 1992, 48, 599–604. DOI:10.2307/2532314.
  • Veerasamy, R.; Rajak, H.; Jain, A.; Sivadasan, S.; Varghese, C. P.; Kishore-Agrawal, R. Validation of QSAR Models – Strategies and Importance. Int. J. Drug Des. Discov. 2011, 2, 511–519.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.