330
Views
7
CrossRef citations to date
0
Altmetric
Original Articles

Preparation and characterization of CdS/ZnS core-shell nanoparticles

, &
Pages 725-732 | Received 29 Dec 2018, Accepted 14 Apr 2019, Published online: 13 May 2019

References

  • Huang, L.; Wang, X.; Yang, J.; Liu, G.; Han, J.; Li, C. Dual Cocatalysts Loaded Type I CdS/ZnS Core/Shell Nanocrystals as Effective and Stable Photocatalysts for H2 Evolution. J. Phys. Chem. C. 2013, 117, 11584–11592. DOI:10.1021/jp400010z.
  • Ghosh Chaudhuri, R.; Paria, S. Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications. Chem. Rev. 2012, 112, 2373–2433. DOI:10.1021/cr100449n.
  • Zhang, J.; Tang, Y.; Lee, K.; Ouyang, M. Nonepitaxial Growth of Hybrid Core-Shell Nanostructures with Large Lattice Mismatches. Science 2010, 327, 1634–1638. DOI:10.1126/science.1184769.
  • Caruso, F.; Spasova, M.; Salgueiriño-Maceira, V.; Liz-Marzán, L. M. Multilayer Assemblies of Silica-Encapsulated Gold Nanoparticles on Decomposable Colloid Templates. Adv. Mater. 2001, 13, 1090–1094. DOI:10.1002/1521-4095.
  • Baby Suganthi, A. R.; Sagayaraj, P. Modified Solvothermal Synthesis and Characterization of CdS/ZnS Core/Shell Nanorods. Mater. Chem. Phys. 2013, 139, 917–922. DOI:10.1016/j.matchemphys.2013.02.056.
  • Arai, T.; Senda, S-i.; Sato, Y.; Takahashi, H.; Shinoda, K.; Jeyadevan, B.; Tohji, K. Cu-Doped ZnS Hollow Particle with High Activity for Hydrogen Generation from Alkaline Sulfide Solution under Visible Light. Chem. Mater. 2008, 20, 1997–2000. DOI:10.1021/cm071803p.
  • Baláž, P.; Achimovičová, M.; Baláž, M.; Billik, P.; Cherkezova-Zheleva, Z.; Criado, J. M.; Delogu, F.; Dutková, E.; Gaffet, E.; Gotor, F. J.; et al. Hallmarks of Mechanochemistry: From Nanoparticles to Technology. Chem. Soc. Rev. 2013, 42, 7571–7637. DOI:10.1039/c3cs35468g.
  • Xianhong, R.; Huiteng, T.; Qingyu, Y. Nanostructured Metal Sulfides for Energy Storage. Nanoscale 2014, 6, 9889–9924. DOI:10.1039/C4NR03057E.
  • Wang, Y.; Tang, Z.; Kotov, N. A. Bioapplication of Nanosemiconductors. Mater. Today 2005, 8, 20–31. DOI:10.1016/S1369-7021(05)00892-8.
  • Zhan, L.; Du, Y.; Zhang, Z.; Pang, D. Preparation and Characterization of CdS Quantum Dots Chitosan Biocomposite. React. Funct. Polym. 2003, 55, 35–43. DOI:10.1016/S1381-5148(02)00197-9.
  • Mu, J.; Gu, D. Y.; Xu, Z. Z. ZnS@CdS Nanostructure Formed by Mixing ZnS with CdS Nanoparticles. J. Disper. Sci. Technol. 2005, 26, 531–533. DOI:10.1081/DIS-200057625.
  • Lasantha, K.; Zhijie, W.; Yi, L. Uniform Thin Films of CdSe and CdSe(ZnS) Core(Shell) Quantum Dots by Sol-Gel Assembly: Enabling Photoelectrochemical Characterization and Electronic Applications. Acs Nano 2013, 7, 12151223. DOI:10.1021/nn304563j.
  • Limin, A.; Xianggui, K.; Yichun, L. Synthesis and Characterization of Thiol-Capped CdSe and CdSe/CdS Core/Shell Nanocrystals in Aqueous Solution. Nanoteohnol. Prec. Eng. 2004, 2, 175–181. DOI:10.13494/j.npe.2004.032.
  • Sukkabot, W. Variation in the Structural and Optical Properties of CdSe/ZnS Core/Shell Nanocrystals with Ratios between Core and Shell Radius. Phys. B Conden. Mat. 2014, 454, 23–30. DOI:10.1016/j.physb.2014.07.031.
  • Kirmse, H.; Neumann, W.; Wiebach, T.; Köhlera, R.; Scheerschmidt, K.; Conrad, D. Computer-Aided Analysis of TEM Images of CdSe/ZnSe Quantum Dots. Mater. Sci. Eng. B. 2000, 69–70, 361–366. DOI:10.1016/S0921-5107(99)00294-9.
  • Yanover, D.; Čapek, R. K.; Rubin-Brusilovski, A.; Vaxenburg, R.; Grumbach, N.; Maikov, G. I.; Solomeshch, O.; Sashchiuk, A.; Lifshitz, E. Small-Sized PbSe/PbS Core/Shell Colloidal Quantum Dots. Chem. Mater. 2012, 24, 4417–4423. DOI:10.1021/cm302793k.
  • Yang, X.; Yang, Q.; Hu, Z.; Guo, S.; Li, Y.; Sun, J.; Xu, N.; Wu, J. Extended Photoresponse of ZnO/CdS Core/Shell Nanorods to Solar Radiation and Related Mechanisms. Sol. Energy Mater. Sol. Cells. 2015, 137, 169–174. DOI:10.1016/j.solmat.2015.02.015.
  • Dong, B.; Cao, L.; Su, G.; Liu, W. Facile Synthesis of Highly Luminescent UV-Blue Emitting ZnSe/ZnS Core/Shell Quantum Dots by a Two-Step Method. Chem. Commun. 2010, 46, 7331–7333. DOI:10.1039/c0cc02042g.
  • Liu, X.; Jiang Lan, Y. X. Highly Luminescent Blue Emitting CdS/ZnS Core/Shell Quantum Dots via a Single-Molecular Precursor for Shell Growth. Mater. Chem. Phys. 2011, 130, 909–914. DOI:10.1016/j.matchemphys.2011.08.009.
  • Amiri, O.; Hosseinpour-Mashkani, S. M.; Mohammadi Rad, M.; Abdvali, F. Sonochemical Synthesis and Characterization of CdS/ZnS Core–Shell Nanoparticles and Application in Removal of Heavy Metals from Aqueous Solution. Superlattices Microstruct. 2014, 66, 67–75. DOI:10.1016/j.spmi.2013.11.003.
  • Xie, R.; Kolb, U.; Li, J.; Basché, T.; Mews, A. Synthesis and Characterization of Highly Luminescent CdSe-Core CdS/Zn0.5Cd0.5S/ZnS Multishell Nanocrystals. J. Am. Chem. Soc. 2005, 127, 7480–7488. DOI:10.1021/ja042939g.
  • Venkata Reddy, C.; Shim, J.; Cho, M. Synthesis, Structural, Optical and Photocatalytic Properties of CdS/ZnS Core/Shell Nanoparticles. J. Phys. Chem. Solids. 2016, 103, 209–217. DOI:10.1016/j.jpcs.2016.12.011.
  • Z.; Bujňáková, M. Baláž.; ErikaDutková, Mechanochemical Approach for the Capping of Mixed Core CdS/ZnS Nanocrystals: Elimination of Cadmium Toxicity. J. Colloid Interface Sci. 2016, 486, 97–111. DOI:10.1016/j.jcis.2016.09.033.
  • Zhang, Z.; Xie, B.; Li, J.; Fang, B.; Lin, Y. CdS Nanodots Preparation and Crystallization in a Polymeric Colloidal Nanoreactor and Their Characterizations. Colloids Surf. A Physicochem. Eng. Asp. 2018, 546, 203–211. DOI:10.1016/j.colsurfa.2018.03.020.
  • Zhang, Z.; Xie, B.; Ding, J.; Fang, B. Preparation of CdFe2O4-Polymeric Nanoparticles by Inverse Miniemulsion and Its Film Properties. Colloids Surf. A Physicochem. Eng. Asp. 2016, 495, 100–109. DOI:10.1016/j.colsurfa.2016.02.010.
  • Wang, Z.; Zhang, H.; Cao, H.; Wang, L.; Wan, Z.; Hao, Y.; Wang, X. Facile Preparation of ZnS/CdS Core/Shell Nanotubes and Their Enhanced Photocatalytic Performance. Int. J. Hydrog. Energy 2017, 42, 17394–17402. DOI:10.1016/j.ijhydene.2017.04.091.
  • Shenglin, X.; Baojuan, X.; Yitai, Q. CdS Hierarchical Nanostructures with Tunable Morphologies: Preparation and Photocatalytic Properties. J. Phys. Chem. C 2010, 114, 14029–14035. DOI:10.1021/jp1049588.
  • Rusu, M. I.; Stefan, C. R.; Elisa, M.; Feraru, I. D.; Vasiliu, I. C.; Bartha, C.; Trusca, R. D.; Vasile, E.; Peretz, S. CdS/ZnS-Doped Silico-Phosphate Films Prepared by Sol-Gel Synthesis. J. Non-Cryst. Solids 2018, 481, 435–440. DOI:10.1016/j.jnoncrysol.2017.11.025.
  • Deng, D.; Yu, J. S.; Pan, Y. Water-Soluble CdSe and CdSe/CdS Nanocrystals: A Greener Synthetic Route. J. Colloid Interface Sci. 2006, 299, 225–232. DOI:10.1016/j.jcis.2006.01.066.
  • Wang, L.; Wei, H.; Fan, Y.; Liu, X.; Zhan, J. Synthesis, Optical Properties, and Photocatalytic Activity of One-Dimensional CdS@ZnS Core-Shell Nanocomposites. Nanoscale Res. Lett. 2009, 4, 558–564. DOI:10.1007/s11671-009-9280-3.
  • Ethayaraja, M.; Ravikumar, C.; Muthukumaran, D.; Dutta, K.; Bandyopadhyaya, R. CdS-ZnS Core-Shell Nanoparticle Formation: Experiment, Mechanism, and Simulation. J. Phys. Chem. C 2007, 111, 3246–3252. DOI:10.1021/jp066066j.
  • Wang, Y.; Herron, N. Nanometer-Sized Semiconductor Clusters: Materials Synthesis, Quantum Size Effects, and Photophysical Properties. J. Phys. Chem. 1991, 95, 525–532. DOI:10.1021/j100155a009.
  • Stroyuk, O.; Weigert, F.; Raevskaya, A.; Spranger, F.; Würth, C.; Resch-Genger, U.; Gaponik, N.; Zahn, D. R. T. Inherently Broadband Photoluminescence in Ag–in–S/ZnS Quantum Dots Observed in Ensemble and Single-Particle Studies. J. Phys. Chem. C 2019, 123, 2632–2641. DOI:10.1021/acs.jpcc.8b11835.
  • Fenton, J. L.; Steimle, B. C.; Schaak, R. E. Structure-Selective Synthesis of Wurtzite and Zincblende ZnS, CdS, and CuInS2 Using Nanoparticle Cation Exchange Reactions. Inorg. Chem. 2019, 58, 672–678. DOI:10.1021/acs.inorgchem.8b02880.
  • A.; Szemjonov, T.; Pauporté, S.; I.; Ithurria, B.; Dubertret, I.; Ciofini, F. Labat, Combined Computational and Experimental Study of CdSeS/ZnS Nanoplatelets: Structural, Vibrational, and Electronic Aspects of Core–Shell Interface Formation. Langmuir 2018, 34, 13828–13836. DOI:10.1021/acs.langmuir.8b02245.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.