108
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Synthesis, characterization, rheological and self-assembly behavior of polyelectrolytes hydrophobically modified with high styrene content: Effect of external parameters on thickening properties and nano-associations

& ORCID Icon
Pages 751-762 | Received 10 Feb 2019, Accepted 14 Apr 2019, Published online: 13 May 2019

References

  • Wever, D.; Picchioni, F.; Broekhuis, A. Polymers for Enhanced Oil Recovery: A Paradigm for Structure–Property Relationship in Aqueous Solution. Prog. Polym. Sci. 2011, 36, 1558–1628. DOI:10.1016/j.progpolymsci.2011.05.006.
  • Candau, F.; Selb, J. Hydrophobically-Modified Polyacrylamides Prepared by Micellar Polymerization. Adv. Colloid Interface Sci. 1999, 79, 149–172. DOI:10.1016/S0001-8686(98)00077-3.
  • Ma, G.; Li, X.; Wang, X.; Liu, G.; Jiang, L.; K. Preparation, Y. Rheological and Drag Reduction Properties of Hydrophobically Associating Polyacrylamide Polymer. J. Disper. Sci. Technol. 2018, 40, 1–8. DOI:10.1080/01932691.2018.1461637.
  • Khakpour, H.; Abdollahi, M. Copolymer Microstructure, Nanocomposite Morphology and Aqueous Solution Viscosity of Styrene-Modified Polyacrylamides in Situ Synthesized in Presence of Clay Mineral. Appl. Clay Sci. 2018, 151, 10–19. DOI:10.1016/j.clay.2017.10.004.
  • Khakpour, H.; Synthesis, A. M. Characterization, Rheological Properties and Hydrophobic Nano-Association of Acrylamide/Styrene and Acrylamide/Sodium Styrene Sulfonate/Styrene co-and Terpolymers. J. Polym. Res. 2016, 23, 1–10. DOI:10.1007/s10965-016-1064-8.
  • Chen, H-x.; Tang, H-m.; Wu, X-y.; Liu, Y-g.; Bai, J-h.; Zhao, F. Synthesis, Characterization, and Property Evaluation of a Hydrophobically Modified Polyacrylamide as Enhanced Oil Recovery Chemical. J. Disper. Sci. Technol. 2016, 37, 486–495. DOI:10.1080/01932691.2015.1045600.
  • Raffa, P.; Broekhuis, A. A.; Picchioni, F. Polymeric Surfactants for Enhanced Oil Recovery: A Review. J. Pept. Sci. Eng. 2016, 145, 723–733. DOI:10.1016/j.petrol.2016.07.007.
  • Dowling, K. C.; Thomas, J. A Novel Micellar Synthesis and Photophysical Characterization of Water-Soluble Acrylamide-Styrene Block Copolymers. Macromolecules 1990, 23, 1059–1064. DOI:10.1021/ma00206a025.
  • Shaban, M.; Ramazani S.A, A.; Ahadian, M. M.; Tamsilian, Y.; Weber, A. P. Facile Synthesis of Cauliflower-like Hydrophobically Modified Polyacrylamide Nanospheres by Aerosol-Photopolymerization. Eur. Polym. J. 2016, 83, 323–336. DOI:10.1016/j.eurpolymj.2016.08.022.
  • Wan, T.; Zou, C.; Chen, L.; Zhou, Z.; Xu, M.; Cheng, W.; Li, R. Synthesis and Solution Properties of Hydrophobically Associative Polyacrylamides by Microemulsion Polymerization. J. Solution Chem. 2014, 43, 1947–1962. DOI:10.1007/s10953-014-0254-4.
  • Khakpour, H.; Abdollahi, M. Rheological Properties of Acrylamide/Butyl Acrylate/2-Acrylamido-2-Methyl-1-Propane Sulfonic Acid co-and Terpolymers Synthesized by Heterogeneous and Micellar Methods. Polym. Bull. 2017, 74, 5145–5161. DOI:10.1007/s00289-017-2009-z.
  • McCormick, C. L.; Johnson, C. B. Water-Soluble Polymers. 28. Ampholytic Copolymers of Sodium 2-Acrylamido-2-Methylpropanesulfonate with (2-Acrylamido-2-Methylpropyl) Dimethylammonium Chloride: synthesis and Characterization. Macromolecules 1988, 21, 686–693. DOI:10.1021/ma00181a025.
  • Khakpour, H.; A. Abdollahi, M. Nasiri, A. Synthesis, Microstructural Characterization and Hydrophobic Intermolecular Nano-Aggregation Behavior of Acrylamide/2-Acrylamido-2-Methy-1-Propane Sulfonic Acid/Butyl Acrylate co-and Terpolymers. J. Polym. Res. 2015, 22, 189. DOI:10.1007/s10965015-0828-x.
  • McCormick, C. L.; Johnson, C. B. Water-Soluble Polymers: 33. Ampholytic Terpolymers of Sodium 2-Acrylamido-2-Methylpropanesulphonate with 2-Acrylamido-2-Methylpropanedimethylammonium Chloride and Acrylamide: Synthesis and Aqueous-Solution Behaviour. Polymer 1990, 31, 1100–1107. DOI:10.1016/0032-3861(90)90258-Z.
  • Kujawa, P.; Rosiak, J. M.; Selb, J.; Candau, F. Micellar Synthesis and Properties of Hydrophobically Associating Polyampholytes. Macromol. Chem. Phys. 2001, 202, 1384–1397. DOI:10.1002/1521-3935%2820010501%29202%3A8 < 1384%3A%3AAID-MACP1384 > 3.0.CO%3B2-1.
  • Khakpour, H.; Haghgoo, M.; Etemadi, K. Analysis and Optimization of Viscosity of Concentrated Silica Suspensions by Response Surface Methodology (RSM): Control of Particle Modality. J. Disper. Sci. Technol. 2018, 39, 1352–1359. DOI:10.1080/01932691.2017.1403924.
  • Jones, B.; Goos, P. I-Optimal versus D-Optimal Split-Plot Response Surface Designs. J. Qual. Technol. 2012, 44, 85. DOI:10.1080/00224065.2012.11917886.
  • Goos, P.; Jones, B.; Syafitri, U. I-Optimal Design of Mixture Experiments. J. Amer. Statist. Assoc. 2016, 111, 899–911. DOI:10.1080/01621459.2015.1136632.
  • Xin, H.; Ao, D.; Wang, X.; Zhu, Y.; Zhang, J.; Tan, Y. Synthesis, Characterization, and Properties of Copolymers of Acrylamide with Sodium 2-Acrylamido-2-Methylpropane Sulfonate with Nano Silica Structure. Colloid Polym. Sci. 2015, 293, 1307–1316. DOI:10.1007/s00396-015-3512-0.
  • Abdollahi, M.; Khakpour, H. Synthesis of Polyacrylamides Hydrophobically Modified with Butyl Acrylate Using a Nanoclay with Interlayer Spaces for Butyl Acrylate Aggregation: studies on the Microstructure and Aqueous Solution Viscosity. RSC Adv. 2015, 5, 102844–102855. DOI:10.1039/C5RA21015A.
  • Lane, W. Determination of Solubility of Styrene in Water and of Water in Styrene. Ind. Eng. Chem. Anal. Ed. 1946, 18, 295–296. DOI:10.1021/i560153a009.
  • Hill, A.; Candau, F.; Selb, J. Properties of Hydrophobically Associating Polyacrylamides: influence of the Method of Synthesis. Macromolecules. 1993, 26, 4521–4532. DOI:10.1021/ma00069a017.
  • Scott, A. J.; Riahinezhad, M.; Penlidis, A. Optimal Design for Reactivity Ratio Estimation: A Comparison of Techniques for AMPS/Acrylamide and AMPS/Acrylic Acid Copolymerizations. Processes. 2015, 3, 749–768. DOI:10.3390/pr3040749.
  • Bezerra, M. A.; Santelli, R. E.; Oliveira, E. P.; Villar, L. S.; Escaleira, L. A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta. 2008, 76, 965–977. DOI:10.1016/j.talanta.2008.05.019.
  • Zhong, K.; Wang, Q. Optimization of Ultrasonic Extraction of Polysaccharides from Dried Longan Pulp Using Response Surface Methodology. Carbohydr. Polym 2010, 80, 19–25. DOI:10.1016/j.carbpol.2009.10.066.
  • Chieng, B.; Ibrahim, N.; Yunus, W. W. Optimization of Tensile Strength of Poly (Lactic Acid)/Graphene Nanocomposites Using Response Surface Methodology. Polym. Plast. Technol. Eng 2012, 51, 791–799. DOI:10.1080/03602559.2012.663043.
  • Antonietti, M.; Foerster, S.; Zisenis, M.; Conrad, J. Solution Viscosity of Polyelectrolyte-Surfactant Complexes: polyelectrolyte Behavior in Nonaqueous Solvents. Macromolecules 1995, 28, 2270–2275. DOI:10.1021/ma00111a022.
  • Jiménez-Regalado, E.; Selb, J.; Candau, F. Effect of Surfactant on the Viscoelastic Behavior of Semidilute Solutions of Multisticker Associating Polyacrylamides. Langmuir. 2000, 16, 8611–8621. DOI:10.1021/la000168y.
  • Bu, H.; Kjøniksen, A.-L.; Knudsen, K. D.; Nyström, B. Effects of Surfactant and Temperature on Rheological and Structural Properties of Semidilute Aqueous Solutions of Unmodified and Hydrophobically Modified Alginate. Langmuir. 2005, 21, 10923–10930. DOI:10.1021/la051187g.
  • González-Coronel, V. J.; Jiménez-Regalado, E. J. Effect of Surfactant on the Viscoelastic Behavior of Semidilute Solution of Two Different Families of Water-Soluble Copolymers Prepared by Solution Polymerization. J. Polym. Res. 2013, 20, 254. DOI:10.1007/s10965013-0254-x.
  • Kumar, S.; Mandal, A. Rheological Properties and Performance Evaluation of Synthesized Anionic Polymeric Surfactant for Its Application in Enhanced Oil Recovery. Polymer. 2017, 120, 30–42. DOI:10.1016/j.polymer.2017.05.051.
  • Samanta, A.; Bera, A.; Ojha, K.; Mandal, A. Effects of Alkali, Salts, and Surfactant on Rheological Behavior of Partially Hydrolyzed Polyacrylamide Solutions. J. Chem. Eng. Data 2010, 55, 4315–4322. DOI:10.1021/je100458a.
  • Liang, R.; Mackley, M. Rheological Characterization of the Time and Strain Dependence for Polyisobutylene Solutions. J. Non-newton Fluid Mech. 1994, 52, 387–405. DOI:10.1016/0377-0257(94)85031-3.
  • Yang, X.; Liu, J.; Li, P.; Liu, C. Self-Assembly Properties of Hydrophobically Associating Perfluorinated Polyacrylamide in Dilute and Semi-Dilute Solutions. J. Polym. Res. 2015, 22, 103. DOI:10.1007/s10965-015-0750-2.
  • Al-Hadithi, T.; Barnes, H.; Walters, K. The Relationship between the Linear (Oscillatory) and Nonlinear (Steady-State) Flow Properties of a Series of Polymer and Colloidal Systems. Colloid Colloid Polym. Sci. 1992, 270, 40–46. DOI:10.1007/BF00656927.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.