128
Views
2
CrossRef citations to date
0
Altmetric
Original Articles

Preparation of novel carbon spheres based on molecular design and adsorption/degradation of methyl orange

, , , , , , , , & show all
Pages 980-991 | Received 07 Dec 2018, Accepted 28 Apr 2019, Published online: 21 May 2019

References

  • Xu, F.; Tang, Z.; Huang, S.; Chen, L.; Liang, Y.; Mai, W.; Zhong, H.; Fu, R.; Wu, D. Facile Synthesis of Ultrahigh-Surface-Area Hollow Carbon Nanospheres for Enhanced Adsorption and Energy Storage. Nat. Commun. 2015, 6, 1–10. DOI:10.1038/ncomms8221.
  • Hong, S.; Xian-Chun, T.; Nan-Xiang, W.; Hong-bin, C. Leakage of Soluble Microbial Products from Biological Activated Carbon Filtration in Drinking Water Treatment Plants and Its Influence on Health Risks. Chemosphere 2018, 202, 626–636. DOI:10.1.016/j.chemosphere.2018.03.123.
  • Xiao, J.; Gao, B.; Yue, Q.; Sun, Y.; Kong, J.; Gao, Y.; Li, Q. Characterization of Nanoscale Zero-Valent Iron Supported on Granular Activated Carbon and Its Application in Removal of Acrylonitrile from Aqueous Solution. J. Taiwan Inst. Chem. Eng. 2015, 55, 152–158. DOI:10.1016/j.jtice.2015.04.010.
  • Fu, F.; Ma, J.; Xie, L.; Tang, B.; Han, W.; Lin, S. Chromium Removal Using Resin Supported Nanoscale Zero-Valent Iron. J. Environ. Manage. 2013, 128, 822–827. DOI:10.1016/j.jenvman.2013.06.044.
  • Khalil, A. M. E.; Eljamal, O.; Amen, T. W. M.; Sugihara, Y.; Matsunaga, N. Optimized Nano-Scale Zero-Valent Iron Supported on Treated Activated Carbon for Enhanced Nitrate and Phosphate Removal from Water. Chem. Eng. J. 2017, 309, 349–365. DOI:10.1016/j.cej.2016.10.080.
  • Xiao, J.; Yue, Q.; Gao, B.; Sun, Y.; Kong, J.; Gao, Y.; Li, Q.; Wang, Y. Performance of Activated Carbon/Nanoscale Zero-Valent Iron for Removal of Trihalomethanes (THMs) at Infinitesimal Concentration in Drinking Water. Chem. Eng. J. 2014, 253, 63–72. DOI:10.1016/j.cej.2014.05.030.
  • Funada, M.; Nakano, T.; Moriwaki, H. Removal of Polycyclic Aromatic Hydrocarbons from Soil Using a Composite Material Containing Iron and Activated Carbon in the Freeze-Dried Calcium Alginate Matrix: Novel Soil Cleanup Technique. J. Hazard. Mater. 2018, 351, 232–239. (November 2017), DOI:10.1016/j.jhazmat.2018.02.054.
  • Pandolfo, A. G.; Hollenkamp, A. F. Carbon Properties and Their Role in Supercapacitors. J. Power Sources 2006, 157, 11–27. 02.065. DOI:10.1016/j.jpowsour.2006.
  • Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; et al. Carbon-Based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1542. DOI:10.1126/science.1200770.
  • Liang, Y.; Wu, B.; Wu, D.; Xu, F.; Li, Z.; Luo, J.; Zhong, H.; Fu, R.; Matyjaszewski, K. Ultrahigh Surface Area Hierarchical Porous Carbons Based on Natural Well-Defined Macropores in Sisal Fibers. J. Mater. Chem. 2011, 21, 14424–14427. DOI:10.1039/c1jm13077c.
  • Zhong, H.; Xu, F.; Li, Z.; Fu, R.; Wu, D. High-Energy Supercapacitors Based on Hierarchical Porous Carbon with an Ultrahigh Ion-Accessible Surface Area in Ionic Liquid Electrolytes. Nanoscale 2013, 5, 4678–4682. DOI:10.1039/c3nr00738c.
  • Hu, M.; Reboul, J.; Furukawa, S.; Torad, N. L.; Ji, Q.; Srinivasu, P.; Ariga, K.; Kitagawa, S.; Yamauchi, Y. Direct Carbonization of Al-Based Porous Coordination Polymer for Synthesis of Nanoporous Carbon. J. Am. Chem. Soc. 2012, 134, 2864–2867. DOI:10.1021/ja208940u.
  • Jiang, H. L.; Liu, B.; Lan, Y. Q.; Kuratani, K.; Akita, T.; Shioyama, H.; Zong, F.; Xu, Q. From Metal-Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake. J. Am. Chem. Soc. 2011, 133, 11854–11857. DOI:10.1021/ja203184k.
  • Zheng, F.; Yang, Y.; Chen, Q. High Lithium Anodic Performance of Highly Nitrogen-Doped Porous Carbon Prepared from a Metal-Organic Framework. Nat. Commun. 2014, 5, 1–10. DOI:10.1038/ncomms6261.
  • Chmiola, J. Anomalous Increase in Carbon Capacitance at Pore Sizes Less than 1 Nanometer _J Chmiola.Pdf. Science (80-.). 2006, 313, 1760–1763. DOI:10.1126/science.1132195.
  • Largeot, C.; Portet, C.; Chmiola, J.; Taberna, P. L.; Gogotsi, Y.; Simon, P. Relation between the Ion Size and Pore Size for an Electric Double-Layer Capacitor. J. Am. Chem. Soc. 2008, 130, 2730–2731. DOI:10.1021/ja7106178.
  • Wan, Y.; Shi, Y.; Zhao, D. Supramolecular Aggregates as Templates: Ordered Mesoporous Polymers and Carbons. Chem. Mater. 2008, 20, 932–945. DOI:10.1021/cm7024125.
  • Liu, J.; Yang, T.; Wang, D. W.; Lu, G. Q.; Zhao, D.; Qiao, S. Z. A Facile Soft-Template Synthesis of Mesoporous Polymeric and Carbonaceous Nanospheres. Nat. Commun. 2013, 4, 1–7. DOI:10.1038/ncomms3798.
  • Lu, A. H.; Hao, G. P.; Sun, Q. Can Carbon Spheres Be Created through the Stöber Method?. Angew. Chem. Int. Ed. 2011, 50, 9023–9025. DOI:10.1002/anie.201103514.
  • Choma, J.; Jamioła, D.; Augustynek, K.; Marszewski, M.; Gao, M.; Jaroniec, M. New Opportunities in Stöber Synthesis: Preparation of Microporous and Mesoporous Carbon Spheres. J. Mater. Chem. 2012, 22, 12636–12642. DOI:10.1039/c2jm31678a.
  • Qiao, Z.-A.; Guo, B.; Binder, A. J.; Chen, J.; Veith, G. M.; Dai, S. Controlled Synthesis of Mesoporous Carbon Nanostructures via a “Silica-Assisted” Strategy. Nano Lett. 2013, 13, 207–212. DOI:10.1021/nl303889h.
  • Zhou, J.; Song, H.; Chen, X.; Huo, J. Diffusion of Metal in a Confined Nanospace of Carbon Nanotubes Induced by Air Oxidation. J. Am. Chem. Soc. 2010, 132, 11402–11405. DOI:10.1021/ja105712w.
  • Feng, J.; Zhu, B.; Wei.; Lim, T. T. Reduction of Chlorinated Methanes with Nano-Scale Fe Particles: Effects of Amphiphiles on the Dechlorination Reaction and Two-Parameter Regression for Kinetic Prediction. Chemosphere 2008, 73, 1817–1823. DOI:10.1016/j.chemosphere.2008.08.014.
  • Tseng, H. H.; Su, J. G.; Liang, C. Synthesis of Granular Activated Carbon/Zero Valent Iron Composites for Simultaneous Adsorption/Dechlorination of Trichloroethylene. J. Hazard. Mater. 2011, 192, 500–506. DOI:10.1016/j.jhazmat.2011.05.047.
  • Chen, Z. X.; Jin, X. Y.; Chen, Z.; Megharaj, M.; Naidu, R. Removal of Methyl Orange from Aqueous Solution Using Bentonite-Supported Nanoscale Zero-Valent Iron. J. Colloid Interface Sci. 2011, 363, 601–607. DOI:10.1016/j.jcis.2011.07.057.
  • Shi, L.; Zhang, X.; Chen, Z. Removal of Chromium (VI) from Wastewater Using Bentonite-Supported Nanoscale Zero-Valent Iron. Water Res. 2011, 45, 886–892. DOI:10.1016/j.watres.2010.09.025.
  • Yan, J.; Qian, L.; Gao, W.; Chen, Y.; Ouyang, D.; Chen, M. Enhanced Fenton-like Degradation of Trichloroethylene by Hydrogen Peroxide Activated with Nanoscale Zero Valent Iron Loaded on Biochar. Sci. Rep. 2017, 7, 1–9. DOI:10.1038/srep43051.
  • Rafatullah, M.; Sulaiman, O.; Hashim, R.; Ahmad, A. Adsorption of Methylene Blue on Low-Cost Adsorbents: A Review. J. Hazard. Mater. 2010, 177, 70–80. DOI:10.1016/j.jhazmat.2009.12.047.
  • Afkhami, A.; Moosavi, R. Adsorptive Removal of Congo Red, A Carcinogenic Textile Dye, from Aqueous Solutions by Maghemite Nanoparticles. J. Hazard. Mater. 2010, 174, 398–403. DOI:10.1016/j.jhazmat.2009.09.066.
  • Lin, Y.; Weng, C.; Chen, F. Effective Removal of AB24 Dye by Nano/Micro-Size Zero-Valent Iron. Sep. Purif. Technol. 2008, 64, 26–30. DOI:10.1016/j.seppur.2008.08.012.
  • Quinn, J.; Geiger, C.; Clausen, C.; Brooks, K.; Coon, C.; O'Hara, S.; Krug, T.; Major, D.; Yoon, W.-S.; Gavaskar, A.; et al. Field Demonstration of DNAPL Dehalogenation Using Emulsified Zero-Valent Iron. Environ. Sci. Technol. 2005, 39, 1309–1318. DOI:10.1021/es0490018.
  • Hwang, Y.; Kim, D.; Shin, H. Mechanism Study of Nitrate Reduction by Nano Zero Valent Iron. J. Hazard. Mater. 2011, 185, 1513–1521. DOI:10.1016/j.jhazmat.2010.10.078.
  • Fan, Y. W. L.; Wang, S. H. S.; Wang, H. Y. K. Role of Dissolved Iron Ions in Nanoparticulate Zero‑Valent Iron/H2O2 Fenton – like System. No. 0123456789, 2018. DOI:10.1007/s13762-018-2094-z.
  • Hu, S.; Wu, Y.; Zhang, Y.; Zhou, B. Nitrate Removal from Groundwater by Heterotrophic/Autotrophic Denitrification Using Easily Degradable Organics and Nano-Zero Valent Iron as Co-Electron Donors. Water Air Soil Pollut. 2018, 229, 56. DOI:10.1007/s11270-018-3713-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.