286
Views
1
CrossRef citations to date
0
Altmetric
Original Articles

Microbubble characteristic in a co-flowing liquid in microfluidic chip

, , , , , & show all
Pages 992-1001 | Received 14 Jan 2019, Accepted 28 Apr 2019, Published online: 22 May 2019

References

  • Yang, L, Characteristics of Micro-Bubble and Nano-Bubble and Their Application in Environmental Pollution Control. Chem. Ind. Eng. Prog. 2012, 31, 1333–1337. DOI: 10.16085/j.issn.1000-6613.2012.06.041.
  • Zhou, L. V. Applied Research of Micro-Nano-Bubble Aeration Technology on Treatment of Domestic Sewage. Guangzhou Chem. Ind. 2014, 42, 122–124.
  • Takahashi, M.; Kawamura, T.; Yamamoto, Y.; Ohnari, H.; Himuro, S.; Shakutsui, H. Effect of Shrinking Microbubble on Gas Hydrate Formation. J. Phys. Chem. B. 2003, 107, 2171–2173. DOI: 10.1021/jp022210z.
  • Garstecki, P.; et al. Formation of Bubbles and Droplets in Microfluidic Systems. Bull. Pol. Acad. Sci. Tech. Sci. 2005, 53, 361–372.
  • Zhu, P.; Tang, X.; Wang, L. Droplet Generation in co-Flow Microfluidic Channels with Vibration. Microfluid. Nanofluidics. 2016, 20, 1–10. DOI: 10.1007/s10404-016-1717-2.
  • Stride, E.; Edirisinghe, M. Novel Microbubble Preparation Technologies. Soft Matter. 2008, 4, 2350–2359. DOI: 10.1039/b809517p.
  • Hettiarachchi, K.; Talu, E.; Longo, M. L.; Dayton, P. A.; Lee, A. P. On-Chip Generation of Microbubbles as a Practical Technology for Manufacturing Contrast Agents for Ultrasonic Imaging. Lab Chip. 2007, 7, 463–468. DOI: 10.1039/b701481n.
  • Pancholi, K. P.; Farook, U.; Moaleji, R.; Stride, E.; Edirisinghe, M. J. Novel Methods of Preparing Phospholipid Coated Microbubbles. Eur. Biophys. J. 2008, 37, 515–520. DOI: 10.1007/s00249-007-0211-x.
  • Dollet, B.; et al. Role of the Channel Geometry on the Bubble Pinch-Off in Flow-Focusing Devices. Phys. Rev. Lett. 2008, 100, 345041–345044. DOI: 10.1103/PhysRevLett.100.034504.
  • Gerlach, D.; Biswas, G.; Durst, F.; et al. Quasi-Static Bubble Formation on Submerged Orifices. Int. J. Heat Mass Transfe.r 2005, 48, 425–438. DOI: 10.1016/j.ijheatmasstransfer.2004.09.002.
  • Huang, Q.; Li, C. A Theoretical Model for Bubble Formation during Horizontal Gas Injection into Liquid Flow in Vertical Tubes. J. Disper. Sci. Technol. 2018, 39, 1435–1441. DOI: 10.1080/01932691.2017.1413654.
  • Solsvik, J.; Skjervold, V. T.; Jakobsen, H. A. A Bubble Breakage Model for Finite Reynolds Number Flows. J. Disper. Sci. Technol. 2017, 38, 973–978. DOI: 10.1080/01932691.2016.1216440.
  • Chen, W. B.; Tan, R. B. H. Theoretical Analysis of Two-Phase Bubble Formation in an Immiscible Liquid. Aiche J. 2003, 49, 1964–1971. DOI: 10.1002/aic.690490806.
  • Chen, W. B.; Tan, R. B. H. Theoretical Analysis of Bubble Formation in a Co-Flowing Liquid. J. Chem. Eng. Japan. 2002, 35, 952–962. DOI: 10.1252/jcej.35.952.
  • Nahra, H.K.; Kamotani, Y. Prediction of bubble diameter at detachment from a wall orifice in liquid cross-flow under reduced and normal gravity conditions. Chem. Eng. Sci. 2003, 58, 55–69. DOI: 10.1016/S0009-2509(02)00516-X
  • Tsuge, H.; Hibino, S. Bubble Formation from a Submerged Single Orifice Accompanied by Pressure Fluctuations in Gas Chamber. J. Chem. Eng. Japan. 1978, 11, 173. DOI: 10.1252/jcej.11.173.
  • Miyahara, T.; Matsuba, Y.; Takahashi, T. Bubble Formation from an Orifice at High Gas Flow Rates. Int. Chem. Eng. 1983, 23, 524–531.
  • Miyahara, T.; Takahashi, T. Bubble Formation in Single Bubbling Regime with Weeping at a Submerged Orifice. J. Chem. Eng. Japan. 1984, 17, 597–602. DOI: 10.1252/jcej.17.597.
  • Gaddis, E. S.; Vogelpohl, A. Bubble Formation in Quiescent Liquids under Constant Flow Conditions. Chem. Eng. Sci. 1986, 41, 97–105. DOI: 10.1016/0009-2509(86)85202-2.
  • Kupferberg, A.; Jameson, G. J. Bubble Formation at Submerged Orifice above a Gas Chamber of Finite Volume. Trans. Inst. Chem. Eng. 1969, 47, 241–250.
  • Tsuge, H.; Hibino, S. Bubble Formation from an Orifice Submerged in Liquids. Chem. Eng. Commun. 1983, 22, 63–79. DOI: 10.1080/00986448308940046.
  • Yu, X.; Wang, Y.; Huang, C. Three Stages of Bubble Formation on Submerged Orifice Under Constant Gas Flow Rate. J. Phys. 2015, 656, 012042. DOI: 10.1088/1742-6596/656/1/012042.
  • Van, S. V.; Kleijn, C. R.; Kreutzer, M. T. Predictive Model for the Size of Bubbles and Droplets Created in Microfluidic T-Junctions. Lab Chip 2010, 10, 2513. DOI: 10.1039/c002625e.
  • Jia, Y.; Ren, Y.; Hou, L.; Liu, W.; Jiang, T.; Deng, X.; Tao, Y.; Jiang, H. Electrically Controlled Rapid Release of Actives Encapsulated in Double-Emulsion Droplets. Lab Chip 2018, 18, 1121–1129. DOI: 10.1039/C7LC01387F.
  • Deng, X.; Ren, Y.; Hou, L. Electric Field-Induced Cutting of Hydrogel Microfibers with Precise Length Control for Micromotors and Building Blocks. ACS Appl. Mater. Interfaces. 2018, 10, 4440228–4440237. DOI: 10.1021/acsami.8b12597.
  • Jia, Y.; Ren, Y.; Hou, L.; Liu, W.; Deng, X.; Jiang, H. Sequential Coalescence Enabled Two-Step Microreactions in Triple-Core Double-Emulsion Droplets Triggered by an Electric Field. Small 2017, 13, 1702188. DOI: 10.1002/smll.201702188.
  • Sanderse, B.; Haspels, M.; Henkes, R. Simulation of Elongated Bubbles in a Channel Using the Two-Fluid Model. J. Disper. Sci. Technol. 2015, 36, 1407–1418. DOI: 10.1080/01932691.2014.989571.
  • Jia, Y.; Ren, Y.; Liu, W.; Hou, L.; Tao, Y.; Hu, Q.; Jiang, H. Correction: Electrocoalescence of Paired Droplets Encapsulated in Double-Emulsion Drops. Lab Chip 2016, 16, 4466–4466. DOI: 10.1039/C6LC90113A.
  • Nekouei, M.; Vanapalli, S. A. Volume-of-Fluid Simulations in Microfluidic T-Junction Devices: Influence of Viscosity Ratio on Droplet Size. Phys. Fluids 2017, 29, 032007. DOI: 10.1063/1.4978801.
  • Liu, W.; Ren, Y.; Tao, Y. Control of Two-Phase Flow in Microfluidics Using out-of-Phase Electroconvective Streaming. Phys. Fluids 2017, 29, 112002. DOI: 10.1063/1.5003973.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.